FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL)

Alessandro Artale

Faculty of Computer Science – Free University of Bolzano

artale@inf.unibz.it

http://www.inf.unibz.it/~artale/

Some material (text, figures) displayed in these slides is courtesy of: M. Benerecetti, A. Cimatti, M. Fisher, F. Giunchiglia, M. Pistore, M. Roveri, R.Sebastiani.

Summary of Lecture IV

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

Computation Tree logic Vs. LTL

LTL implicitly quantifies universally over paths.

 $\langle \mathcal{KM}, s \rangle \models \phi$ iff for every path π starting at $s \langle \mathcal{KM}, \pi \rangle \models \phi$

- Properties that assert the *existence* of a path cannot be expressed. In particular, properties which *mix* existential and universal path quantifiers cannot be expressed.
- The Computation Tree Logic, CTL, solves these problems!
 - CTL explicitly introduces *path quantifiers*!
 - CTL is the natural temporal logic interpreted over Branching Time Structures.

CTL at a glance

- CTL is evaluated over branching-time structures (Trees).
- CTL explicitly introduces *path quantifiers*:
 All Paths: P
 Exists a Path:
- Every temporal operator $(\Box, \diamondsuit, \bigcirc, u)$ preceded by a path quantifier (P or \diamondsuit).
- Universal modalities: P ◇, P □, P ○, P u The temporal formula is true in all the paths starting in the current state.
- Existential modalities:

Summary

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

Countable set Σ of *atomic propositions*: p,q,... the set FORM of formulas is:

$$\begin{split} \varphi, \psi & \to \quad p \mid \top \mid \perp \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \\ \mathbb{P} \bigcirc \varphi \mid \mathbb{P} \bigcirc \varphi \mid \mathbb{P} \bigcirc \varphi \mid \mathbb{P} \diamondsuit \varphi \mid \mathbb{P} (\varphi \, \mathcal{U} \, \psi) \\ & \diamondsuit \bigcirc \varphi \mid \diamondsuit \bigcirc \varphi \mid \diamondsuit \bigcirc \varphi \mid \diamondsuit \land \varphi \mid \diamondsuit \land \varphi \mid \diamondsuit \land \varphi \mid \checkmark \end{split}$$

CTL: Semantics

• We interpret our CTL temporal formulas over Kripke Models linearized as trees (e.g. $\mathbb{P} \diamondsuit done$).

- Universal modalities (P ♦, P □, P ○, P 𝔄): the temporal formula is true in all the paths starting in the current state.
- Existential modalities (��, � □, � ○, � u): the temporal formula is true in some path starting in the current state.

Let Σ be a set of atomic propositions. We interpret our CTL temporal formulas over Kripke Models:

$$\mathcal{KM} = \langle S, I, R, \Sigma, L \rangle$$

The semantics of a temporal formula is provided by the *satisfaction* relation:

 $\models: (\mathcal{KM} \times S \times \text{FORM}) \rightarrow \{\text{true}, \text{false}\}$

We start by defining when an atomic proposition is true at a state/time " s_i "

$$\mathcal{KM}, s_i \models p \quad \text{iff} \quad p \in L(s_i) \quad (\text{for } p \in \Sigma)$$

The semantics for the classical operators is as expected: **iff** $\mathcal{KM}, s_i \not\models \mathbf{\Phi}$ $\mathcal{KM}, s_i \models \neg \mathbf{\Phi}$ $\mathcal{KM}, s_i \models \phi \land \psi$ iff $\mathcal{KM}, s_i \models \phi$ and $\mathcal{KM}, s_i \models \psi$ $\mathcal{KM}, s_i \models \phi \lor \psi$ iff $\mathcal{KM}, s_i \models \phi$ or $\mathcal{KM}, s_i \models \psi$ $\mathcal{KM}, s_i \models \phi \Rightarrow \psi$ **iff** if $\mathcal{KM}, s_i \models \varphi$ then $\mathcal{KM}, s_i \models \psi$ $\mathcal{KM}, s_i \models \top$ $\mathcal{KM}, s_i \not\models \bot$

CTL Semantics: The Temporal Aspect

Temporal operators have the following semantics where $\pi = (s_i, s_{i+1}, ...)$ is a generic path outgoing from state $s_i in \mathcal{KM}$. iff $\forall \pi = (s_i, s_{i+1}, \ldots) \quad \mathcal{KM}, s_{i+1} \models \varphi$ $\mathcal{KM}, s_i \models \mathbb{P} \bigcirc \varphi$ $\mathcal{K}\mathcal{M}, s_i \models \Diamond \bigcirc \phi$ iff $\exists \pi = (s_i, s_{i+1}, \ldots) \quad \mathcal{KM}, s_{i+1} \models \varphi$ $\mathcal{KM}, s_i \models \mathbb{P} \square \mathbf{\Phi}$ iff $\forall \pi = (s_i, s_{i+1}, \ldots) \quad \forall j \ge i. \mathcal{KM}, s_j \models \varphi$ $\mathcal{KM}, s_i \models \bigotimes \Box \varphi$ iff $\exists \pi = (s_i, s_{i+1}, \ldots) \quad \forall j \ge i. \mathcal{KM}, s_j \models \varphi$ $\mathcal{KM}, s_i \models \mathbb{P} \diamondsuit \varphi$ iff $\forall \pi = (s_i, s_{i+1}, \ldots) \quad \exists j \ge i. \mathcal{KM}, s_j \models \varphi$ $\mathcal{KM}, s_i \models \bigotimes \bigotimes \varphi$ iff $\exists \pi = (s_i, s_{i+1}, \ldots) \quad \exists j \ge i. \mathcal{KM}, s_j \models \varphi$ $\mathcal{KM}, s_i \models \mathbb{P}(\varphi \mathcal{U} \psi)$ iff $\forall \pi = (s_i, s_{i+1}, \ldots) \quad \exists j \ge i. \mathcal{KM}, s_j \models \psi$ and $\forall i \leq k < j : M, s_k \models \varphi$ $\mathcal{KM}, s_i \models \bigotimes (\varphi \, \mathcal{U} \, \psi) \quad \text{iff} \quad \exists \pi = (s_i, s_{i+1}, \ldots) \quad \exists j \ge i. \mathcal{KM}, s_j \models \psi \text{ and}$ $\forall i \leq k < j : \mathcal{KM}, s_k \models \varphi$ CTL is given by the standard boolean logic enhanced with temporal operators.

- > "Necessarily Next". $\mathbb{P} \bigcirc \varphi$ is true in s_t iff φ is true in every successor state s_{t+1}
- > "Possibly Next". $\bigcirc \bigcirc \phi$ is true in s_t iff ϕ is true in one successor state s_{t+1}
- > "Necessarily in the future" (or "Inevitably"). $\mathbb{P} \diamondsuit \phi$ is true in s_t iff ϕ is inevitably true in some $s_{t'}$ with $t' \ge t$
- > "Possibly in the future" (or "Possibly"). $\bigotimes \diamondsuit \phi$ is true in s_t iff ϕ may be true in some $s_{t'}$ with $t' \ge t$

CTL Semantics: Intuitions (Cont.)

- > "Globally" (or "always"). ℙ □ ϕ is true in s_t iff ϕ is true in all $s_{t'}$ with $t' \ge t$
- > "Possibly henceforth". $\diamondsuit \Box \varphi \Box \varphi$ is true in s_t iff φ is possibly true henceforth
- > "Necessarily Until". $\mathbb{P}(\varphi u \psi)$ is true in s_t iff necessarily φ holds until ψ holds.
- > "Possibly Until". $\oint (\phi u \psi)$ is true in s_t iff possibly ϕ holds until ψ holds.

Alternative notations are used for temporal operators.

- $\langle P \rangle \sim E$ there Exists a path
- $\mathbb{P} \longrightarrow A$ in All paths
- \langle \sim *F* sometime in the Future
- \bigcirc \rightsquigarrow **G** Globally in the future
- $\bigcirc \rightsquigarrow X$ neXtime

EF_P

A Complete Set of CTL Operators

All CTL operators can be expressed via: $\diamond \bigcirc, \diamond \boxdot, \diamond u$

- P $\bigcirc \equiv \neg \diamondsuit \bigcirc \neg \varphi$
- $\mathbb{P} \diamondsuit \phi \equiv \neg \diamondsuit \Box \neg \phi$
- $\diamondsuit \diamondsuit \phi \equiv \diamondsuit (\top u \phi)$
- P $\Box \phi \equiv \neg \diamondsuit \diamondsuit \neg \phi \equiv \neg \diamondsuit (\top \mathcal{U} \neg \phi)$

Summary

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

Safety Properties

Safety:

"something bad will not happen"

Typical examples:

$$\mathbb{P} \ [\neg(reactor_temp > 1000)]$$

$$\mathbb{P} \ [\neg(one_way \land \mathbb{P} \bigcirc other_way)]$$

$$\mathbb{P} \ [\neg((x=0) \land \mathbb{P} \bigcirc \mathbb{P} \bigcirc \mathbb{P} \bigcirc (y=z/x))]$$
and so on....

Usually: P

Liveness Properties

Liveness:

"something good will happen"

Typical examples:

Usually: $\mathbb{P}\diamondsuit$...

Often only really useful when scheduling processes, responding to messages, etc.

Fairness:

"something is successful/allocated infinitely often"

Typical example:

 $\mathbb{P} \left[(\mathbb{P} \diamondsuit enabled) \right]$

Usually: $\mathbb{P} \square \mathbb{P} \diamondsuit \dots$

Summary

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

The CTL Model Checking Problem is formulated as:

$\mathcal{KM} \models \phi$

Check if $\mathcal{KM}, s_0 \models \phi$, for **every initial state**, s_0 , of the Kripke structure \mathcal{KM} .

Example 1: Mutual Exclusion (Safety)

Example 1: Mutual Exclusion (Safety)

YES: There is no reachable state in which $(C_1 \land C_2)$ holds! (Same as the $\Box \neg (C_1 \land C_2)$ in LTL.)

Example 2: Liveness

Example 2: Liveness

YES: every path starting from each state where T_1 holds passes through a state where C_1 holds. (Same as $\Box(T_1 \Rightarrow \diamondsuit C_1)$ in LTL)

Example 3: Fairness

Example 3: Fairness

NO: e.g., in the initial state, there is the blue cyclic path in which C_1 never holds! (Same as $\Box \diamondsuit C_1$ in LTL)

Example 4: Non-Blocking

Example 4: Non-Blocking

YES: from each state where N_1 holds there is a path leading to a state where T_1 holds. (No corresponding LTL formulas)

Summary

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

LTL Vs. CTL: Expressiveness

- > Many CTL formulas cannot be expressed in LTL (e.g., those containing paths quantified existentially) E.g., $\mathbb{P} [(N_1 \Rightarrow \diamondsuit \land T_1)$
- > Many LTL formulas cannot be expressed in CTL E.g., $\square \diamondsuit T_1 \Rightarrow \square \diamondsuit C_1$ (Strong Fairness in LTL) i.e, formulas that select a *range* of paths with a property $(\diamondsuit p \Rightarrow \diamondsuit q$ Vs. $\mathbb{P} \square (p \Rightarrow \mathbb{P} \diamondsuit q))$
- > Some formluas can be expressed both in LTL and in CTL (typically LTL formulas with operators of nesting depth 1) E.g., $\Box \neg (C_1 \land C_2)$, $\diamondsuit C_1$, $\Box (T_1 \Rightarrow \diamondsuit C_1)$, $\Box \diamondsuit C_1$

CTL and LTL have incomparable expressive power.

The choice between LTL and CTL depends on the application and the personal preferences.

Summary

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

The Computation Tree Logic CTL*

- CTL* is a logic that combines the expressive power of LTL and CTL.
- Temporal operators can be applied without any constraints.
 - P (φ ∨ φ).
 Along all paths, φ is true in the next state or the next two steps.

• $\diamondsuit(\square\diamondsuit\phi)$.

There is a path along which ϕ is infinitely often true.

Countable set Σ of atomic propositions: p,q,... we distinguish between *States Formulas* (evaluated on states):

$$\begin{array}{rcl} \varphi, \psi & \to & p \mid \top \mid \perp \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \\ & & \mathbb{P} \mid \alpha \mid \diamondsuit \alpha \end{array}$$

and *Path Formulas* (evaluated on paths):

$$\begin{array}{rcl} \alpha,\beta & \to & \phi \mid & & \\ & & \neg \alpha \mid \alpha \land \beta \mid \alpha \lor \beta \mid & \\ & & \bigcirc \alpha \mid \ \Box \alpha \mid \diamondsuit \alpha \mid (\alpha \, \varkappa \, \beta) \end{array}$$

The set of CTL* formulas FORM is the set of state formulas.

We start by defining when an atomic proposition is true at a state " s_0 "

$$\mathcal{KM}, s_0 \models p \quad \text{iff} \quad p \in L(s_0) \quad (\text{for } p \in \Sigma)$$

The semantics for *State Formulas* is the following where $\pi = (s_0, s_1, ...)$ is a generic path outgoing from state s_0 : $\mathcal{KM}, s_0 \models \neg \phi$ iff $\mathcal{KM}, s_0 \not\models \phi$ $\mathcal{K}\mathcal{M}, s_0 \models \mathbf{\phi} \land \mathbf{\psi}$ **iff** $\mathcal{KM}, s_0 \models \varphi \text{ and } \mathcal{KM}, s_0 \models \psi$ $\mathcal{K}\mathcal{M}, s_0 \models \mathbf{\phi} \lor \mathbf{\psi}$ **iff** $\mathcal{KM}, s_0 \models \varphi \text{ or } \mathcal{KM}, s_0 \models \psi$ $\mathcal{KM}, s_0 \models \bigotimes \alpha$ $\exists \pi = (s_0, s_1, \ldots)$ such that $\mathcal{KM}, \pi \models \alpha$ iff $\mathcal{KM}, s_0 \models \mathbb{P} \alpha$ iff $\forall \pi = (s_0, s_1, \ldots)$ then $\mathcal{KM}, \pi \models \alpha$

CTL* Semantics: Path Formulas

The semantics for *Path Formulas* is the following where $\pi = (s_0, s_1, ...)$ is a generic path outgoing from state s_0 and π^i denotes the suffix path $(s_i, s_{i+1}, ...)$:

 $\mathcal{KM}, \pi \models \varphi$ iff $\mathcal{KM}, s_0 \models \varphi$ $\mathcal{KM}, \pi \models \neg \alpha$ iff $\mathcal{KM}, \pi \not\models \alpha$ $\mathcal{KM}, \pi \models \alpha \land \beta$ **iff** $\mathcal{KM}, \pi \models \alpha$ and $\mathcal{KM}, \pi \models \beta$ $\mathcal{KM}, \pi \models \alpha \lor \beta$ **iff** $\mathcal{KM}, \pi \models \alpha \text{ or } \mathcal{KM}, \pi \models \beta$ $\mathcal{KM}, \pi \models \Diamond \alpha$ iff $\exists i \geq 0$ such that $\mathcal{KM}, \pi^i \models \alpha$ $\mathcal{KM}, \pi \models \bigsqcup \alpha$ $\forall i \geq 0$ then $\mathcal{KM}, \pi^i \models \alpha$ iff iff $\mathcal{KM}, \pi^1 \models \alpha$ $\mathcal{KM}, \pi \models \bigcirc \alpha$ $\mathcal{KM}, \pi \models \alpha \mathcal{U} \beta$ iff $\exists i \geq 0$ such that $\mathcal{KM}, \pi^i \models \beta$ and $\forall j. (0 \leq j \leq i) \text{ then } \mathcal{KM}, \pi^j \models \alpha$

CTLs Vs LTL Vs CTL: Expressiveness

CTL* subsumes both CTL and LTL

 $\begin{array}{l} > \ \varphi \ \text{in CTL} \Longrightarrow \varphi \ \text{in CTL}^* \ (\text{e.g.}, \ \mathbb{P} \ \square (N_1 \Rightarrow \diamondsuit \land T_1)) \\ > \ \varphi \ \text{in LTL} \Longrightarrow \ \mathbb{P} \ \varphi \ \text{in CTL}^* \ (\text{e.g.}, \ \mathbb{P} \ (\ \square \diamondsuit \land T_1 \Rightarrow \square \diamondsuit \land C_1)) \\ > \ \text{LTL} \ \cup \ \text{CTL} \ \subset \ \text{CTL}^* \ (\text{e.g.}, \ \diamondsuit \ (\ \square \diamondsuit p \Rightarrow \square \diamondsuit q)) \end{array}$

The following Table shows the Computational Complexity of checking *Satisbiability*

Logic	Complexity
LTL	PSpace-Complete
CTL	ExpTime-Complete
CTL*	2ExpTime-Complete

The following Table shows the Computational Complexity of *Model Checking* (M.C.)

• Since M.C. has 2 inputs – the model, \mathcal{M} , and the formula, ϕ – we give two complexity measures.

Logic	Complexity w.r.t.	$ \phi $ Complexity w.r.t. $ \mathcal{M} $
LTL	PSpace-Complete	P (linear)
CTL	P-Complete	P (linear)
CTL*	PSpace-Complete	P (linear)

Summary of Lecture IV

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.