Applicative Functors

October 22, 2019

Functions

- Consider the addition function:

Functions

- Consider the addition function:
- 1 + 1 = 2

Functions

- Consider the addition function:
- $1+1=2$
- $2+2=4$

Functions

- Consider the addition function:
- $1+1=2$
- $2+2=4$
- (+) :: Num a => a -> a -> a

Maps

- Remember maps:

Maps

- Remember maps:
- map succ $[1,2]=[2,3]$

Maps

- Remember maps:
- map succ $[1,2]=[2,3]$
- map (+) $[0,2][1,2]=$

Maps

- Remember maps:
- map succ $[1,2]=[2,3]$
- map (+) $[0,2][1,2]=$

Couldn't match expected type '[Integer] -> t' with actual type '[Integer -> Integer]'
Relevant bindings include it :: t (bound at <interactive>:2:1)
The function 'map' is applied to three arguments, but its type '(Integer -> Integer -> Integer)
-> [Integer] -> [Integer -> Integer]'
has only two
In the expression: map (+) [0, 2] [1, 2]
In an equation for 'it': it $=\operatorname{map}(+)[0,2][1,2]$

Maps

- First of all, what do we expect map (+) [0,2] [1,2] to be?

Maps

- First of all, what do we expect map (+) [0,2] [1,2] to be?
- Python: [0,2] + [1,2] = [0,2,1,2]

Maps

- Lists as nondeterminism:

Maps

- Lists as nondeterminism:
- We want to add two numbers, but we don't know what they are

Maps

- Lists as nondeterminism:
- We want to add two numbers, but we don't know what they are
- All we know is that we have two boxes of numbers, [0,2] and [1,2]

Maps

- Lists as nondeterminism:
- We want to add two numbers, but we don't know what they are
- All we know is that we have two boxes of numbers, [0,2] and [1,2]
- We pick a number from the first box and a number from the second box, and add them

Maps

- Lists as nondeterminism:
- We want to add two numbers, but we don't know what they are
- All we know is that we have two boxes of numbers, [0,2] and [1,2]
- We pick a number from the first box and a number from the second box, and add them
- What are our possible results?

Maps

- Lists as nondeterminism:
- We want to add two numbers, but we don't know what they are
- All we know is that we have two boxes of numbers, [0,2] and [1,2]
- We pick a number from the first box and a number from the second box, and add them
- What are our possible results?
- $[0+1,0+2,2+1,2+2]=[1,2,3,4]$

Maps

- The function 'map' is applied to three arguments, but its type '(Integer \rightarrow Integer \rightarrow Integer) \rightarrow [Integer] $->$ [Integer $->$ Integer]' has only two

Maps

- The function 'map' is applied to three arguments, but its type '(Integer \rightarrow Integer $->$ Integer) \rightarrow [Integer] -> [Integer $->$ Integer]' has only two
- Let's give it two arguments!

Maps

- The function 'map' is applied to three arguments, but its type '(Integer -> Integer -> Integer)
-> [Integer] -> [Integer -> Integer]'
has only two
- Let's give it two arguments!
- (map $(+)[0,2])[1,2]=([(0+),(2+)])[1,2]=$

Maps

- The function 'map' is applied to three arguments, but its type '(Integer $->$ Integer $->$ Integer)
-> [Integer] -> [Integer -> Integer]'
has only two
- Let's give it two arguments!
- (map $(+)[0,2])[1,2]=([(0+),(2+)])[1,2]=$ Couldn't match expected type '[Integer] \rightarrow t' with actual type '[Integer -> Integer]'
Relevant bindings include it : : t (bound at <interactive>:3:1)
The function ' $[(0+),(2+)]$ ' is applied to one argument, but its type '[Integer -> Integer]' has none In the expression: $([(0+),(2+)])[1,2]$
In an equation for 'it': it $=([(0+),(2+)])[1,2]$

Functors

- Functors are boxes
- That implement maps that lift normal functions (of type a $->$ b) to functions over boxes (of type F a \rightarrow F b)

Functors

- Lists are boxes
- That implement maps that lift normal functions (of type a -> b) to functions over boxes (of type [a] -> [b])

Functors

- Lists are boxes
- That implement maps that lift normal functions (of type a -> b) to functions over boxes (of type [a] -> [b])
- But now we have functions inside of boxes (of type [a -> b])

Functors

- Lists are boxes
- That implement maps that lift normal functions (of type a -> b) to functions over boxes (of type [a] -> [b])
- But now we have functions inside of boxes (of type [a -> b])
- How do we extract these functions and apply them to a box of type [a] to get a box of type [b]?

Applicative Functors

- class (Functor f) => Applicative f where

$$
\text { pure : : a } \rightarrow \text { f a }
$$

$$
(\langle *>):: f(a->b)->f a \rightarrow f
$$

Applicative Functors

- class (Functor f) => Applicative f where

$$
\text { pure : : a }->\text { f a }
$$

$$
(\langle *\rangle):: f(a->b)->f a \rightarrow f
$$

- pure takes a value and puts it in a box

Applicative Functors

- class (Functor f) => Applicative f where

$$
\text { pure : : a }->\text { f a }
$$

$$
(\langle *>):: f(a->b)->f a \rightarrow f
$$

- pure takes a value and puts it in a default context

Applicative Functors

- class (Functor f) => Applicative f where pure : : a \rightarrow f a
(<*>) :: f (a -> b) -> f a -> f b
- pure takes a value and puts it in a default context
- (<*>) takes a box of functions and returns a function over boxes

Applicative Functors

- class (Functor f) => Applicative f where pure : : a \rightarrow f a (<*>) :: f (a -> b) -> f a -> f b
- pure takes a value and puts it in a default context
- (<*>) takes a function in a context and returns a function over contexts

Lists are Applicative Functors

- instance Applicative [] where

$$
\begin{aligned}
& \text { pure } x=[x] \\
& \text { fs }<*>\mathrm{xs}=[\mathrm{f} x \mid \mathrm{f}<-\mathrm{fs}, \mathrm{x}<-\mathrm{xs}]
\end{aligned}
$$

Lists are Applicative Functors

- $[(0+),(2+)]<*>[1,2]=[f x \mid f<-[(0+),(2+)], x<-[1,2]]$

Lists are Applicative Functors

- $[(0+),(2+)]$ <*> $[1,2]=[f \times 1 \mathrm{f}<-[(0+),(2+)], \mathrm{x}<-[1,2]]$ $=[(0+) 1,(0+) 2,(2+) 1,(2+) 2]$

Lists are Applicative Functors

- $[(0+),(2+)]<*>[1,2]=[f x \mid f<-[(0+),(2+)], x<-[1,2]]$
$=[(0+) 1,(0+) 2,(2+) 1,(2+) 2]$
$=[1,2,3,4]$

Applicative Style

- $[1,2,3,4]=[(0+),(2+)]\langle *\rangle[1,2]$

Applicative Style

- $[1,2,3,4]=[(0+),(2+)]<*>[1,2]$

$$
=(f m a p(+)[0,2])<*>[1,2]
$$

Applicative Style

- $[1,2,3,4]=[(0+),(2+)]<*>[1,2]$

$$
=(f m a p(+)[0,2])<*>[1,2]
$$

$$
=(+)\langle \$\rangle[0,2]<*\rangle[1,2]
$$

Applicative Style

- $[1,2,3,4]=[(0+),(2+)]<*>[1,2]$

$$
=(\text { fmap }(+)[0,2])<*>[1,2]
$$

$$
=(+)\langle \$\rangle[0,2]\langle *\rangle[1,2]
$$

- f <\$> $x=f m a p f x$

Applicative Style

- $[1,2,3,4]=[(0+),(2+)]<*>[1,2]$

$$
=(f m a p(+)[0,2])<*>[1,2]
$$

$$
=(+)\langle \$\rangle[0,2]<*\rangle[1,2]
$$

- f <\$> x = fmap f x
- Does this remind you of anything?

Applicative Style

- $1+1=2$

Applicative Style

- $1+1=2$
(+) 1
$1=2$

Applicative Style

- $1+1=2$
\(\left.\begin{array}{ccc}(+) \& \& 1

(+) \& \$ \& 1\end{array}\right) \quad\)| 1 |
| :--- |
| 1 |$=2$

Applicative Style

- $1+1=2$

$(+)$		1		1	$=$
$(+)$	$\$$	1	$)$	1	$=$
$(+)$	$\langle \$\rangle$	$[1]$	$\langle *\rangle$	$[1]$	$=$

Applicative Style

- $1+1=2$

$(+)$		1		1	$=$	2
$((+)$	$\$$	1	$)$	1	$=$	2
$(+)$	$\langle \$\rangle$	$[1]$	$\langle *\rangle$	$[1]$	$=$	$[2]$

- \$ is function application, $\langle \$\rangle$ is lifted function application

Applicative Style

- $1+1=2$

$(+)$		1	1	$=$	2
$((+)$	$\$$	1	$)$	1	$=$
$(+)$	$\langle \$\rangle$	$[1]$	$\langle *\rangle$	$[1]$	$=[2]$

- \$ is function application, <\$> is lifted function application
- liftA2 f a b = f <\$> a <*> b (imported from Control.Applicative)

IO is an Applicative Functor

- instance Applicative IO where
pure = return

```
a <*> b = do
    f <- a
    x <- b
    return (f x)
```


IO is an Applicative Functor

- instance Applicative IO where
pure = return

```
a <*> b = do
        f <- a
    x <- b
    return (f x)
```

- instance Functor IO where

$$
\begin{aligned}
& \text { f <\$> b = do } \\
& \mathrm{x}<-\mathrm{b} \\
& \text { return (f x) }
\end{aligned}
$$

IO is an Applicative Functor

- instance Applicative IO where
pure = return

$$
\begin{array}{cc}
\mathrm{a}<*>\mathrm{b}=\mathrm{do} & \mathrm{f}\langle \$\rangle \mathrm{b}=\mathrm{do} \\
\mathrm{f}<-\mathrm{a} & \\
\mathrm{x}<-\mathrm{b} & \mathrm{x}<-\mathrm{b} \\
\text { return (} \mathrm{f} \text {) } & \text { return (} \mathrm{f} \text {) }
\end{array}
$$

- instance Functor IO where
- Get an x from the outside world, apply f to x , and wrap it up in an IO box

IO is an Applicative Functor

- instance Applicative IO where

$$
\begin{aligned}
& \text { pure = return } \\
& \begin{array}{rl}
\mathrm{a}<*> & \mathrm{b}=\mathrm{do} \\
\mathrm{f} & <-\mathrm{a} \\
\mathrm{x} & <-\mathrm{b} \\
& \\
\text { return (} \mathrm{f} & \mathrm{x} \text {) }
\end{array}
\end{aligned}
$$

- instance Functor IO where

$$
\mathrm{f}\langle \$\rangle \mathrm{b}=\mathrm{do}
$$

$$
\begin{aligned}
& \mathrm{x}<-\mathrm{b} \\
& \text { return (f } \mathrm{x})
\end{aligned}
$$

- Get an x from the outside world, apply f to x , and wrap it up in an IO box
- Get both an f and an x from the outside world, apply f to x, and wrap it up in an IO box

Sequencing Actions

1. Get a line
2. Get a line
3. "Return" the lines concatenated together

Sequencing Actions

1. Get a line
2. Get a line
3. "Return" the lines concatenated together

- myAction = do
a <- getLine
b <- getLine
return \$ a ++ b

Sequencing Actions

1. Get a line
2. Get a line
3. "Return" the lines concatenated together

- myAction = do
a <- getLine
b <- getLine
return \$ a ++ b

$$
=(++)<\$>\text { getLine <*> getLine }
$$

Sequencing Actions

1. Get a line
2. Get a line
3. "Return" the lines concatenated together

- myAction $=$ do
a <- getLine
b <- getLine
return \$ a ++ b
$=(++)<\$>$ getLine <*> getLine
- Get a line a, apply (++) to a (to get ((++) a)), and wrap it up in an IO box

Sequencing Actions

1. Get a line
2. Get a line
3. "Return" the lines concatenated together

- myAction = do
$\mathrm{a}<-$ getLine
$\mathrm{b}<-$ getLine
return \$ a ++ b

$$
=(++)<\$>\text { getLine <*> getLine }
$$

- Get a line a, apply (++) to a (to get ((++) a)), and wrap it up in an IO box
- Take ((++) a) out of the box, get another line b, apply $((++)$ a) to b (to get a ++ b), and wrap it up in another IO box

Sequencing Actions

1. Get a line
2. Get a line
3. "Return" the lines concatenated together

- myAction = do
a <- getLine
b <- getLine
return \$ a ++ b
$=(++)<\$>$ getLine <*> getLine
- Actions

Sequencing Actions

1. Get a line
2. Get a line
3. "Return" the lines concatenated together

- myAction = do
a <- getLine
b <- getLine
return \$ a ++ b
$=(++)<\$>$ getLine <*> getLine
- What to do with the results

Sequencing Actions

- Sequencing more actions

Sequencing Actions

- Sequencing more actions
- ($\backslash \mathrm{x}$ y z -> $\mathrm{x}++\mathrm{y}++\mathrm{z}$)
<\$> getLine <*> getLine <*> getLine

Sequencing Actions

- Sequencing more actions
- ($\backslash \mathrm{x}$ y $\mathrm{z} \rightarrow \mathrm{x}++\mathrm{y}++\mathrm{z}$)
<\$> getLine <*> getLine <*> getLine
$=$ liftA3 ($\backslash x$ y $z \rightarrow x++y++z)$
getLine getLine getLine

Sequencing Actions

- Sequencing more actions
- ($\backslash \mathrm{x}$ y $\mathrm{z} \rightarrow \mathrm{x}++\mathrm{y}++\mathrm{z}$)
<\$> getLine <*> getLine <*> getLine
$=$ liftA3 ($\backslash x$ y $z \rightarrow x++y++z)$
getLine getLine getLine
- ($\backslash \mathrm{w}$ x y z $\rightarrow \mathrm{w}++\mathrm{x}++\mathrm{y}++\mathrm{z})$
<\$> getLine <*> getLine <*> getLine <*> getLine

Sequencing Actions

- Sequencing more actions
- ($\backslash \mathrm{x}$ y $\mathrm{z} \rightarrow \mathrm{x}++\mathrm{y}++\mathrm{z}$)
<\$> getLine <*> getLine <*> getLine
$=\operatorname{liftA3}(\backslash x$ y $z \rightarrow x++y++z)$
getLine getLine getLine
- ($\backslash \mathrm{w}$ x y z $\rightarrow \mathrm{w}++\mathrm{x}++\mathrm{y}++\mathrm{z})$
<\$> getLine <*> getLine <*> getLine <*> getLine
$\neq \operatorname{liftA4}(\backslash \mathrm{W} x \mathrm{y} \mathrm{z} \rightarrow \mathrm{w}++\mathrm{x}++\mathrm{y}++\mathrm{z})$
getLine getLine getLine getLine
= <interactive>:4:1: Not in scope: 'liftA4'

Sequencing Actions

- Sequencing an arbitrary number of actions

Sequencing Actions

- Sequencing an arbitrary number of actions
- sequenceA [getLine, getLine, getLine]

Sequencing Actions

- Sequencing an arbitrary number of actions
- sequenceA [getLine, getLine, getLine]
- sequenceA :: (Applicative f) => [f a] -> f [a]

Sequencing Actions

- Sequencing an arbitrary number of actions
- sequenceA [getLine, getLine, getLine]
- sequenceA :: (Applicative f) => [f a] -> f [a]
- Takes a list of actions and returns an action that contains a list of results

Sequencing Actions

- Sequencing an arbitrary number of actions
- sequenceA [getLine, getLine, getLine]
- sequenceA :: (Applicative f) => [f a] -> f [a]
- Takes a list of actions and returns an action that contains a list of results
- What to do with the results

Sequencing Actions

- Sequencing an arbitrary number of actions
- sequenceA [getLine, getLine, getLine]
- sequenceA :: (Applicative f) => [f a] -> f [a]
- Takes a list of actions and returns an action that contains a list of results
- What to do with the results
- (foldr (++) "")
<\$> sequenceA [getLine, getLine, getLine]

Sequencing Actions

- Sequencing an arbitrary number of actions
- sequenceA [getLine, getLine, getLine]
- sequenceA :: (Applicative f) => [f a] -> f [a]
- Takes a list of actions and returns an action that contains a list of results
- What to do with the results
- (foldr (++) "")
<\$> sequenceA [getLine, getLine, getLine]
- See Chapter 6.5 for folds

Applicative Laws

- Identity: pure id <*> v = v

Applicative Laws

- Identity: pure id <*> v = v
- Composition: pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

Applicative Laws

- Identity: pure id <*> v = v
- Composition: pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
- Compare to functor laws:
- Identity: id <\$> v = v
- Composition: (.) u v <\$> w $=\mathrm{u}\langle \$\rangle$ (v <\$> w)

Applicative Laws

- Identity: pure id $\langle *\rangle \mathrm{v}=\mathrm{v}$
- Composition: pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
- Compare to functor laws:
- Identity: id $\langle \$\rangle \mathrm{v}=\mathrm{v}$
- Composition: (.) u v <\$> w $=\mathrm{u}\langle \$\rangle$ (v <\$> w)
- Compare to definitions of id and .:
- Identity: id \$ v = v
- Composition: (.) u v \$ w $=$ u \$ (v \$ w)

Applicative Laws

- Identity: pure id <*> v = v
- Composition: pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
- Homomorphism: pure f <*> pure $x=$ pure (f x)

Applicative Laws

- Identity: pure id <*> v = v
- Composition: pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
- Homomorphism: pure f <*> pure $x=$ pure (f x)
- Interchange: u <*> pure y = pure (\$ y) <*> u

Applicative Laws

- Identity: pure id <*> v = v
- Composition: pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
- Homomorphism: pure f <*> pure $x=$ pure (f x)
- Interchange: u <*> pure y = pure (\$ y) <*> u
- Bonus: pure f <*> $x=f m a p$ f $=f$ $\langle \$\rangle x$

Applicative Functors

- Other examples of applicative functors:

Applicative Functors

- Other examples of applicative functors:
- Maybe

Applicative Functors

- Other examples of applicative functors:
- Maybe
- Functions ((->) r)

Applicative Functors

- Functors are boxes
- That implement maps that lift normal functions (of type a \rightarrow b) to functions over boxes (of type F a \rightarrow F b)

Applicative Functors

- Functors are boxes
- That implement maps that lift normal functions (of type a $->$ b) to functions over boxes (of type F a \rightarrow F b)
- Applicative functors are boxes that support function application

Applicative Functors

- Functors are boxes
- That implement maps that lift normal functions (of type a -> b) to functions over boxes (of type F a \rightarrow F b)
- Applicative functors are boxes that support function application
- If you have a normal function ($\mathrm{a}->\mathrm{b}$), you can put it in a box (F (a $->\mathrm{b})$), and apply it to a box (F a) to get another box (F b)

Applicative Functors

- Functors represent context
- That implement maps that lift normal functions (of type a \rightarrow b) to functions over context (of type F a \rightarrow F b)
- Applicative functors represent contexts that support function application
- If you have a normal function (a $->$ b), you can put it in a context (F ($\mathrm{a}->\mathrm{b}$)), and apply it to a context (F a) to get another context (F b)

