
Functors

October 15, 2019



Functions

• Consider the successor function:

• succ 0 = 1

• succ 1 = 2

5

4

3

2

6

5

4

3



Functions

• Consider the successor function:

• succ 0 = 1

• succ 1 = 2

5

4

3

2

6

5

4

3



Functions

• Consider the successor function:

• succ 0 = 1

• succ 1 = 2

5

4

3

2

6

5

4

3



Functions

• Consider the successor function:

• succ 0 = 1

• succ 1 = 2

5

4

3

2

6

5

4

3



Functions

• More generally, consider types as our objects of interest.

Int Int

• succ :: Int -> Int



Functions

• More generally, consider types as our objects of interest.

Int Int

• succ :: Int -> Int



Functions

• More generally, consider types as our objects of interest.

Int Int

• succ :: Enum a => a -> a



Functions

• More generally, consider types as our objects of interest.

Int Int

• succ :: Int -> Int

• succ is a function from Ints to Ints.



Functions

• More generally, consider types as our objects of interest.

Int Int

• succ :: Int -> Int

• succ is a function from Ints to Ints.



Functions

• More generally, consider types as our objects of interest.

Int Int

• succ :: Int -> Int

• succ is a morphism from Ints to Ints.



Maps

• Let us look at maps:

• map succ [] = []

• map succ [0] = [1]

• map succ [1,2] = [2,3]

• map succ [3,4,5] = [4,5,6]

• van Eijck and Unger: The function map takes a function and a
list and returns a list containing the results of applying the
function to the individual list members.

• map :: (a -> b) -> [a] -> [b]



Maps

• Let us look at maps:

• map succ [] = []

• map succ [0] = [1]

• map succ [1,2] = [2,3]

• map succ [3,4,5] = [4,5,6]

• van Eijck and Unger: The function map takes a function and a
list and returns a list containing the results of applying the
function to the individual list members.

• map :: (a -> b) -> [a] -> [b]



Maps

• Let us look at maps:

• map succ [] = []

• map succ [0] = [1]

• map succ [1,2] = [2,3]

• map succ [3,4,5] = [4,5,6]

• van Eijck and Unger: The function map takes a function and a
list and returns a list containing the results of applying the
function to the individual list members.

• map :: (a -> b) -> [a] -> [b]



Maps

• Let us look at maps:

• map succ [] = []

• map succ [0] = [1]

• map succ [1,2] = [2,3]

• map succ [3,4,5] = [4,5,6]

• van Eijck and Unger: The function map takes a function and a
list and returns a list containing the results of applying the
function to the individual list members.

• map :: (a -> b) -> [a] -> [b]



Maps

• Let us look at maps:

• map succ [] = []

• map succ [0] = [1]

• map succ [1,2] = [2,3]

• map succ [3,4,5] = [4,5,6]

• van Eijck and Unger: The function map takes a function and a
list and returns a list containing the results of applying the
function to the individual list members.

• map :: (a -> b) -> [a] -> [b]



Maps

• Let us look at maps:

• map succ [] = []

• map succ [0] = [1]

• map succ [1,2] = [2,3]

• map succ [3,4,5] = [4,5,6]

• van Eijck and Unger: The function map takes a function and a
list and returns a list containing the results of applying the
function to the individual list members.

• map :: (a -> b) -> [a] -> [b]



Maps

• Let us look at maps:

• map succ [] = []

• map succ [0] = [1]

• map succ [1,2] = [2,3]

• map succ [3,4,5] = [4,5,6]

• van Eijck and Unger: The function map takes a function and a
list and returns a list containing the results of applying the
function to the individual list members.

• map :: (a -> b) -> [a] -> [b]



Maps

• Now let us curry map:

• map :: (a -> b) -> ([a] -> [b])

• The function map takes a function from a to b and returns a
function from [a] to [b].



Maps

• Now let us curry map:

• map :: (a -> b) -> ([a] -> [b])

• The function map takes a function from a to b and returns a
function from [a] to [b].



Maps

• Now let us curry map:

• map :: (a -> b) -> ([a] -> [b])

• The function map takes a function from a to b and returns a
function from [a] to [b].



Maps

• Now let us curry map:

• map :: (a -> b) -> ([a] -> [b])

• The function map takes a function from a to b and returns a
function from [a] to [b].



Maps

[3,4,5]

[1,2]

[0]

[]

[4,5,6]

[2,3]

[1]

[]



Maps

[Int] [Int]

• map succ :: [Int] -> [Int]



Maps

[Int] [Int]

• map succ :: [Int] -> [Int]



Functors

• Wikipedia: Let C and D be categories. A functor F from C
to D is a mapping that

• associates to each object X in C an object F (X ) in D,
• associates to each morphism f : X → Y in C a morphism

F (f ) : F (X )→ F (Y ) in D such that the following two
conditions hold:

• F (idX ) = idF (X ) for every object X in C ,
• F (g ◦ f ) = F (g) ◦ F (f ) for all morphisms f : X → Y
and g : Y → Z in C .

That is, functors must preserve identity morphisms and
composition of morphisms.



Functors

• Let C = D = Hask.

• Hask = the category of Haskell types

• category = objects + morphisms

• objects = types
• morphisms = functions

A functor F from C to D is a mapping that

• associates to each object X in C an object F (X ) in D,
• associates to each morphism f : X → Y in C a morphism

F (f ) : F (X )→ F (Y ) in D such that the following two
conditions hold:

• F (idX ) = idF (X ) for every object X in C ,
• F (g ◦ f ) = F (g) ◦ F (f ) for all morphisms f : X → Y
and g : Y → Z in C .

That is, functors must preserve identity morphisms and
composition of morphisms.



Functors

• Let C = D = Hask.

• Hask = the category of Haskell types

• category = objects + morphisms

• objects = types
• morphisms = functions

A functor F from C to D is a mapping that

• associates to each type a a type F a,
• associates to each morphism f : X → Y in C a morphism
F (f ) : F (X )→ F (Y ) in D such that the following two
conditions hold:

• F (idX ) = idF (X ) for every object X in C ,
• F (g ◦ f ) = F (g) ◦ F (f ) for all morphisms f : X → Y
and g : Y → Z in C .

That is, functors must preserve identity morphisms and
composition of morphisms.



Functors

• Let C = D = Hask.

• Hask = the category of Haskell types

• category = objects + morphisms

• objects = types
• morphisms = functions

A functor F from C to D is a mapping that

• associates to each type a a type F a,
• associates to each function f :: a -> b a function
fmap f :: F a -> F b such that the following two
conditions hold:

• F (idX ) = idF (X ) for every object X in C ,
• F (g ◦ f ) = F (g) ◦ F (f ) for all morphisms f : X → Y
and g : Y → Z in C .

That is, functors must preserve identity morphisms and
composition of morphisms.



Functors

• Let C = D = Hask.

• Hask = the category of Haskell types

• category = objects + morphisms

• objects = types
• morphisms = functions

A functor F from C to D is a mapping that

• associates to each type a a type F a,
• associates to each function f :: a -> b a function
fmap f :: F a -> F b such that the following two
conditions hold:

• fmap id = id,
• F (g ◦ f ) = F (g) ◦ F (f ) for all morphisms f : X → Y
and g : Y → Z in C .

That is, functors must preserve identity morphisms and
composition of morphisms.



Functors

• Let C = D = Hask.

• Hask = the category of Haskell types

• category = objects + morphisms

• objects = types
• morphisms = functions

A functor F from C to D is a mapping that

• associates to each type a a type F a,
• associates to each function f :: a -> b a function
fmap f :: F a -> F b such that the following two
conditions hold:

• fmap id = id,
• fmap (g . f) = fmap g . fmap f.

That is, functors must preserve identity morphisms and
composition of morphisms.

(Haskell will not do this for
you—you have to do it yourself)



Functors

• Let C = D = Hask.

• Hask = the category of Haskell types

• category = objects + morphisms

• objects = types
• morphisms = functions

A functor F from C to D is a mapping that

• associates to each type a a type F a,
• associates to each function f :: a -> b a function
fmap f :: F a -> F b such that the following two
conditions hold:

• fmap id = id,
• fmap (g . f) = fmap g . fmap f.

That is, functors must preserve identity morphisms and
composition of morphisms.(Haskell will not do this for
you—you have to do it yourself)



Lists are Functors

• instance Functor [] where

fmap = map

• For each type a there is a type [a]

• For each function f :: a -> b there is a function
map f :: [a] -> [b] such that the following two
conditions hold:



Lists are Functors

• instance Functor [] where

fmap = map

• For each type a there is a type [a]

• For each function f :: a -> b there is a function
map f :: [a] -> [b] such that the following two
conditions hold:



Lists are Functors

• instance Functor [] where

fmap = map

• For each type a there is a type [a]

• For each function f :: a -> b there is a function
map f :: [a] -> [b] such that the following two
conditions hold:



Lists are Functors

• Identity: map id = id



Lists are Functors

• Identity: map (\y -> y) xs = (\y -> y) xs = xs



Lists are Functors

• Identity: map (\y -> y) xs = (\y -> y) xs = xs

map (\y -> y) [] = []

map (\y -> y) (x:xs) = (\y -> y) x : map (\y -> y) xs

= (\y -> y) x : xs

= (x:xs)



Lists are Functors

• Identity: map (\y -> y) xs = (\y -> y) xs = xs

map (\y -> y) [] = []

map (\y -> y) (x:xs) = (\y -> y) x : map (\y -> y) xs

= (\y -> y) x : xs

= (x:xs)



Lists are Functors

• Identity: map (\y -> y) xs = (\y -> y) xs = xs

map (\y -> y) [] = []

map (\y -> y) (x:xs) = (\y -> y) x : map (\y -> y) xs

= (\y -> y) x : xs

= (x:xs)



Lists are Functors

• Identity: map (\y -> y) xs = (\y -> y) xs = xs

map (\y -> y) [] = []

map (\y -> y) (x:xs) = (\y -> y) x : map (\y -> y) xs

= (\y -> y) x : xs

= (x:xs)



Lists are Functors

• Composition: (map g . map f) xs = map (g . f) xs

(map g . map f) [] = map g (map f [])

= map g []

= []

(map g . map f) (x:xs) = map g (map f (x:xs))

= map g (f x : map f xs)

= g (f x) : map g (map f xs)

= (g . f) x : (map g . map f) xs

= (g . f) x : map (g . f) xs

= map (g . f) (x:xs)



Lists are Functors

• Composition: (map g . map f) xs = map (g . f) xs

(map g . map f) [] = map g (map f [])

= map g []

= []

(map g . map f) (x:xs) = map g (map f (x:xs))

= map g (f x : map f xs)

= g (f x) : map g (map f xs)

= (g . f) x : (map g . map f) xs

= (g . f) x : map (g . f) xs

= map (g . f) (x:xs)



Lists are Functors

• Composition: (map g . map f) xs = map (g . f) xs

(map g . map f) [] = map g (map f [])

= map g []

= []

(map g . map f) (x:xs) = map g (map f (x:xs))

= map g (f x : map f xs)

= g (f x) : map g (map f xs)

= (g . f) x : (map g . map f) xs

= (g . f) x : map (g . f) xs

= map (g . f) (x:xs)



Lists are Functors

• Composition: (map g . map f) xs = map (g . f) xs

(map g . map f) [] = map g (map f [])

= map g []

= []

(map g . map f) (x:xs) = map g (map f (x:xs))

= map g (f x : map f xs)

= g (f x) : map g (map f xs)

= (g . f) x : (map g . map f) xs

= (g . f) x : map (g . f) xs

= map (g . f) (x:xs)



Lists are Functors

• Composition: (map g . map f) xs = map (g . f) xs

(map g . map f) [] = map g (map f [])

= map g []

= []

(map g . map f) (x:xs) = map g (map f (x:xs))

= map g (f x : map f xs)

= g (f x) : map g (map f xs)

= (g . f) x : (map g . map f) xs

= (g . f) x : map (g . f) xs

= map (g . f) (x:xs)



Lists are Functors

• Composition: (map g . map f) xs = map (g . f) xs

(map g . map f) [] = map g (map f [])

= map g []

= []

(map g . map f) (x:xs) = map g (map f (x:xs))

= map g (f x : map f xs)

= g (f x) : map g (map f xs)

= (g . f) x : (map g . map f) xs

= (g . f) x : map (g . f) xs

= map (g . f) (x:xs)



Lists are Functors

• Composition: (map g . map f) xs = map (g . f) xs

(map g . map f) [] = map g (map f [])

= map g []

= []

(map g . map f) (x:xs) = map g (map f (x:xs))

= map g (f x : map f xs)

= g (f x) : map g (map f xs)

= (g . f) x : (map g . map f) xs

= (g . f) x : map (g . f) xs

= map (g . f) (x:xs)



Lists are Functors

• Composition: (map g . map f) xs = map (g . f) xs

(map g . map f) [] = map g (map f [])

= map g []

= []

(map g . map f) (x:xs) = map g (map f (x:xs))

= map g (f x : map f xs)

= g (f x) : map g (map f xs)

= (g . f) x : (map g . map f) xs

= (g . f) x : map (g . f) xs

= map (g . f) (x:xs)



Lists are Functors

• Composition: (map g . map f) xs = map (g . f) xs

(map g . map f) [] = map g (map f [])

= map g []

= []

(map g . map f) (x:xs) = map g (map f (x:xs))

= map g (f x : map f xs)

= g (f x) : map g (map f xs)

= (g . f) x : (map g . map f) xs

= (g . f) x : map (g . f) xs

= map (g . f) (x:xs)



Lists are Functors

• Composition: (map g . map f) xs = map (g . f) xs

(map g . map f) [] = map g (map f [])

= map g []

= []

(map g . map f) (x:xs) = map g (map f (x:xs))

= map g (f x : map f xs)

= g (f x) : map g (map f xs)

= (g . f) x : (map g . map f) xs

= (g . f) x : map (g . f) xs

= map (g . f) (x:xs)



Functors

• Other examples of functors:

• Maybe

• IO

• Functions ((->) r)



Functors

• Other examples of functors:

• Maybe

• IO

• Functions ((->) r)



Functors

• Other examples of functors:

• Maybe

• IO

• Functions ((->) r)



Functors

• Other examples of functors:

• Maybe

• IO

• Functions ((->) r)



Functors

• Functors are boxes

• That implement maps that lift normal functions (of type
a -> b) to functions over boxes (of type F a -> F b)



Functors

• Functors are boxes

• That implement maps that lift normal functions (of type
a -> b) to functions over boxes (of type F a -> F b)



Functors

• Functors represent context

• That implement maps that lift normal functions (of type
a -> b) to functions over context (of type F a -> F b)

• IO: input/output
• Maybe: possible failure
• []: nondeterminism



Functors

• Functors represent context

• That implement maps that lift normal functions (of type
a -> b) to functions over context (of type F a -> F b)

• IO: input/output
• Maybe: possible failure
• []: nondeterminism


