Functors

October 15, 2019

Functions

- Consider the successor function:

Functions

- Consider the successor function:
- succ $0=1$

Functions

- Consider the successor function:
- succ $0=1$
- succ $1=2$

Functions

- Consider the successor function:
- succ $0=1$
- $\operatorname{succ} 1=2$

Functions

- More generally, consider types as our objects of interest.

Functions

- More generally, consider types as our objects of interest.

- succ :: Int -> Int

Functions

- More generally, consider types as our objects of interest.

- succ : : Enum $a=>a \rightarrow a$

Functions

- More generally, consider types as our objects of interest.

- succ :: Int -> Int

Functions

- More generally, consider types as our objects of interest.

- succ :: Int -> Int
- succ is a function from Ints to Ints.

Functions

- More generally, consider types as our objects of interest.

- succ :: Int -> Int
- succ is a morphism from Ints to Ints.

Maps

- Let us look at maps:

Maps

- Let us look at maps:
- map succ [] = []

Maps

- Let us look at maps:
- map succ [] = []
- map succ [0] = [1]

Maps

- Let us look at maps:
- map succ [] = []
- map succ [0] = [1]
- map succ $[1,2]=[2,3]$

Maps

- Let us look at maps:
- map succ [] = []
- map succ [0] = [1]
- map succ $[1,2]=[2,3]$
- map succ $[3,4,5]=[4,5,6]$

Maps

- Let us look at maps:
- map succ [] = []
- map succ [0] = [1]
- map succ $[1,2]=[2,3]$
- map succ $[3,4,5]=[4,5,6]$
- van Eijck and Unger: The function map takes a function and a list and returns a list containing the results of applying the function to the individual list members.

Maps

- Let us look at maps:
- map succ [] = []
- map succ [0] = [1]
- map succ $[1,2]=[2,3]$
- map succ $[3,4,5]=[4,5,6]$
- van Eijck and Unger: The function map takes a function and a list and returns a list containing the results of applying the function to the individual list members.
- map :: (a -> b) -> [a] -> [b]

Maps

- Now let us curry map:

Maps

- Now let us curry map:

Maps

- Now let us curry map:

- map :: (a -> b) -> ([a] -> [b])

Maps

- Now let us curry map:

- map :: (a -> b) -> ([a] -> [b])
- The function map takes a function from a to b and returns a function from [a] to [b].

Maps

Maps

Maps

- map succ :: [Int] -> [Int]

Functors

- Wikipedia: Let C and D be categories. A functor F from C to D is a mapping that
- associates to each object X in C an object $F(X)$ in D,
- associates to each morphism $f: X \rightarrow Y$ in C a morphism $F(f): F(X) \rightarrow F(Y)$ in D such that the following two conditions hold:
- $F\left(\mathrm{id}_{X}\right)=\mathrm{id}_{F(X)}$ for every object X in C,
- $F(g \circ f)=F(g) \circ F(f)$ for all morphisms $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ in C.
That is, functors must preserve identity morphisms and composition of morphisms.

Functors

- Let $C=D=$ Hask.
- Hask $=$ the category of Haskell types
- category $=$ objects + morphisms
- objects = types
- morphisms = functions

A functor F from C to D is a mapping that

- associates to each object X in C an object $F(X)$ in D,
- associates to each morphism $f: X \rightarrow Y$ in C a morphism $F(f): F(X) \rightarrow F(Y)$ in D such that the following two conditions hold:
- $F\left(\mathrm{id}_{X}\right)=\mathrm{id}_{F(X)}$ for every object X in C,
- $F(g \circ f)=F(g) \circ F(f)$ for all morphisms $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ in C.
That is, functors must preserve identity morphisms and composition of morphisms.

Functors

- Let $C=D=$ Hask.
- Hask $=$ the category of Haskell types
- category $=$ objects + morphisms
- objects = types
- morphisms = functions

A functor F from C to D is a mapping that

- associates to each type a a type F a,
- associates to each morphism $f: X \rightarrow Y$ in C a morphism $F(f): F(X) \rightarrow F(Y)$ in D such that the following two conditions hold:
- $F\left(\mathrm{id}_{X}\right)=\mathrm{id}_{F(X)}$ for every object X in C,
- $F(g \circ f)=F(g) \circ F(f)$ for all morphisms $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ in C.
That is, functors must preserve identity morphisms and composition of morphisms.

Functors

- Let $C=D=$ Hask.
- Hask $=$ the category of Haskell types
- category $=$ objects + morphisms
- objects = types
- morphisms $=$ functions

A functor F from C to D is a mapping that

- associates to each type a a type F a,
- associates to each function $f:$ a $->b$ a function fmap f :: F a $->$ F b such that the following two conditions hold:
- $F\left(\mathrm{id}_{X}\right)=\mathrm{id}_{F(X)}$ for every object X in C,
- $F(g \circ f)=F(g) \circ F(f)$ for all morphisms $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ in C.
That is, functors must preserve identity morphisms and composition of morphisms.

Functors

- Let $C=D=$ Hask.
- Hask $=$ the category of Haskell types
- category $=$ objects + morphisms
- objects = types
- morphisms $=$ functions

A functor F from C to D is a mapping that

- associates to each type a a type F a,
- associates to each function $f:$ a $->b$ a function fmap f :: F a $->$ F b such that the following two conditions hold:
- fmap id = id,
- $F(g \circ f)=F(g) \circ F(f)$ for all morphisms $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ in C.
That is, functors must preserve identity morphisms and composition of morphisms.

Functors

- Let $C=D=$ Hask.
- Hask $=$ the category of Haskell types
- category $=$ objects + morphisms
- objects = types
- morphisms $=$ functions

A functor F from C to D is a mapping that

- associates to each type a a type F a,
- associates to each function $f:$ a $->b$ a function fmap f :: F a $->$ F b such that the following two conditions hold:
- fmap id = id,
- fmap (g . f) = fmap g . fmap f.

That is, functors must preserve identity morphisms and composition of morphisms.

Functors

- Let $C=D=$ Hask.
- Hask $=$ the category of Haskell types
- category $=$ objects + morphisms
- objects = types
- morphisms $=$ functions

A functor F from C to D is a mapping that

- associates to each type a a type F a,
- associates to each function $f:$ a $->b$ a function fmap $f:: F$ a \rightarrow F b such that the following two conditions hold:
- fmap id = id,
- fmap (g . f) = fmap g . fmap f.

That is, functors must preserve identity morphisms and composition of morphisms. (Haskell will not do this for you-you have to do it yourself)

Lists are Functors

- instance Functor [] where
fmap = map

Lists are Functors

- instance Functor [] where
fmap = map
- For each type a there is a type [a]

Lists are Functors

- instance Functor [] where
fmap = map
- For each type a there is a type [a]
- For each function $f:: \quad a \quad->b$ there is a function map f :: [a] -> [b] such that the following two conditions hold:

Lists are Functors

- Identity: map id = id

Lists are Functors

- Identity: map ($\backslash \mathrm{y}$-> y) $\mathrm{xs}=(\backslash \mathrm{y} ~->\mathrm{y}) \mathrm{xs}=\mathrm{xs}$

Lists are Functors

- Identity: map ($\backslash \mathrm{y} \rightarrow \mathrm{y}$) $\mathrm{xs}=(\backslash \mathrm{y} \rightarrow \mathrm{y}) \mathrm{xs}=\mathrm{xs}$

$$
\operatorname{map}(\backslash y->y)[]=[]
$$

Lists are Functors

- Identity: map ($\backslash \mathrm{y} \rightarrow \mathrm{y}) \mathrm{xs}=(\backslash \mathrm{y} \rightarrow \mathrm{y}) \mathrm{xs}=\mathrm{xs}$ $\operatorname{map}(\backslash y \rightarrow y)[]=[]$
$\operatorname{map}(\backslash y \rightarrow y)(x: x s)=(\backslash y \rightarrow y) x: \operatorname{map}(\backslash y \rightarrow y) x s$

Lists are Functors

- Identity: map ($\backslash \mathrm{y} \rightarrow \mathrm{y}) \mathrm{xs}=(\backslash \mathrm{y} \rightarrow \mathrm{y}) \mathrm{xs}=\mathrm{xs}$

$$
\begin{aligned}
\operatorname{map}(\backslash y \rightarrow y)[]=[] & \\
\operatorname{map}(\backslash y \rightarrow y)(x: x s) & =(\backslash y \rightarrow y) x: \operatorname{map}(\backslash y \rightarrow y) x s \\
& =(\backslash y \rightarrow y) x: x s
\end{aligned}
$$

Lists are Functors

- Identity: map ($\backslash \mathrm{y} \rightarrow \mathrm{y}) \mathrm{xs}=(\backslash \mathrm{y} \rightarrow \mathrm{y}) \mathrm{xs}=\mathrm{xs}$

$$
\begin{aligned}
\operatorname{map}(\backslash y \rightarrow y)[]=[] & \\
\operatorname{map}(\backslash y \rightarrow y)(x: x s) & =(\backslash y \rightarrow y) x: \operatorname{map}(\backslash y \rightarrow y) x s \\
& =(\backslash y \rightarrow y) x: x s \\
& =(x: x s)
\end{aligned}
$$

Lists are Functors

- Composition: (map g . map f) xs $=\operatorname{map}(\mathrm{g} . \mathrm{f}) \mathrm{xs}$

Lists are Functors

- Composition: (map g . map f) xs $=\operatorname{map}(\mathrm{g} . \mathrm{f}) \mathrm{xs}$

$$
\text { (map g . map f) }[]=\operatorname{map} g(\operatorname{map} f[])
$$

Lists are Functors

- Composition: (map g . map f) xs $=\operatorname{map}(\mathrm{g} . \mathrm{f}) \mathrm{xs}$

$$
\begin{aligned}
(\operatorname{map} g . \operatorname{map} f)[] & =\operatorname{map} g(\operatorname{map} f[]) \\
& =\operatorname{map} g[]
\end{aligned}
$$

Lists are Functors

- Composition: (map g . map f) xs $=\operatorname{map}(\mathrm{g} . \mathrm{f}) \mathrm{xs}$

$$
\begin{aligned}
(\operatorname{map} g . \operatorname{map} f)[] & =\operatorname{map} g(\operatorname{map} f[]) \\
& =\operatorname{map} g[] \\
& =[]
\end{aligned}
$$

Lists are Functors

- Composition: (map g . map f) xs $=\operatorname{map}(\mathrm{g} . \mathrm{f}) \mathrm{xs}$

$$
\begin{aligned}
(\operatorname{map} g . \operatorname{map} f)[] & =\operatorname{map} g(\operatorname{map} f[]) \\
& =\operatorname{map} g[] \\
& =[]
\end{aligned}
$$

Lists are Functors

- Composition: (map g . map f) xs $=\operatorname{map}(\mathrm{g} . \mathrm{f}) \mathrm{xs}$

$$
\begin{aligned}
(\operatorname{map} g \cdot \operatorname{map} f)[] & =\operatorname{map} g(\operatorname{map} f[]) \\
& =\operatorname{map} g[] \\
& =[]
\end{aligned} \quad \begin{aligned}
(\operatorname{map} g \cdot \operatorname{map} f)(x: x s) & =\operatorname{map} g(\operatorname{map} f(x: x s)) \\
& =\operatorname{map} g(f x: \operatorname{map} f x s)
\end{aligned}
$$

Lists are Functors

- Composition: (map g . map f) xs $=\operatorname{map}(\mathrm{g} . \mathrm{f}) \mathrm{xs}$

$$
\begin{aligned}
(\operatorname{map} g \cdot \operatorname{map} f)[] & =\operatorname{map} g(\operatorname{map} f[]) \\
& =\operatorname{map} g[] \\
& =[]
\end{aligned} \quad \begin{aligned}
(\operatorname{map} g \cdot \operatorname{map} f)(x: x s) & =\operatorname{map} g(\operatorname{map} f(x: x s)) \\
& =\operatorname{map} g(f x: \operatorname{map} f x s) \\
& =g(f x): \operatorname{map} g(\operatorname{map} f x s)
\end{aligned}
$$

Lists are Functors

- Composition: (map g . map f) xs $=\operatorname{map}(\mathrm{g} . \mathrm{f}) \mathrm{xs}$

$$
\begin{aligned}
(\operatorname{map} g \cdot \operatorname{map} f)[] & =\operatorname{map} g(\operatorname{map} f[]) \\
& =\operatorname{map} g[] \\
& =[] \\
(\operatorname{map} g \cdot \operatorname{map} f)(x: x s) & =\operatorname{map} g(\operatorname{map} f(x: x s)) \\
& =\operatorname{map} g(f x: \operatorname{map} f x s) \\
& =g(f x): \operatorname{map} g(\operatorname{map} f x s) \\
& =(g \cdot f) x:(\operatorname{map} g \cdot \operatorname{map} f) x s
\end{aligned}
$$

Lists are Functors

- Composition: (map g . map f) xs $=\operatorname{map}(\mathrm{g} . \mathrm{f}) \mathrm{xs}$

$$
\begin{aligned}
(\operatorname{map} g \cdot \operatorname{map} f)[] & =\operatorname{map} g(\operatorname{map} f[]) \\
& =\operatorname{map} g[] \\
& =[] \\
(\operatorname{map} g \cdot \operatorname{map} f)(x: x s) & =\operatorname{map} g(\operatorname{map} f(x: x s)) \\
& =\operatorname{map} g(f x: \operatorname{map} f x s) \\
& =g(f x): \operatorname{map} g(\operatorname{map} f x s) \\
& =(g \cdot f) x:(\operatorname{map} g \cdot \operatorname{map} f) x s \\
& =(g \cdot f) x: \operatorname{map}(g \cdot f) x s
\end{aligned}
$$

Lists are Functors

- Composition: (map g . map f) xs $=\operatorname{map}(\mathrm{g} . \mathrm{f}) \mathrm{xs}$

$$
\begin{aligned}
(\operatorname{map} g \cdot \operatorname{map} f)[] & =\operatorname{map} g(\operatorname{map} f[]) \\
& =\operatorname{map} g[] \\
& =[] \\
(\operatorname{map} g \cdot \operatorname{map} f)(x: x s) & =\operatorname{map} g(\operatorname{map} f(x: x s)) \\
& =\operatorname{map} g(f x: \operatorname{map} f x s) \\
& =g(f x): \operatorname{map} g(\operatorname{map} f x s) \\
& =(g \cdot f) x:(\operatorname{map} g \cdot \operatorname{map} f) x s \\
& =(g \cdot f) x: \operatorname{map}(g \cdot f) x s \\
& =\operatorname{map}(g . f)(x: x s)
\end{aligned}
$$

Functors

- Other examples of functors:

Functors

- Other examples of functors:
- Maybe

Functors

- Other examples of functors:
- Maybe
- IO

Functors

- Other examples of functors:
- Maybe
- IO
- Functions ((->) r)

Functors

- Functors are boxes

Functors

- Functors are boxes
- That implement maps that lift normal functions (of type a \rightarrow b) to functions over boxes (of type F a \rightarrow F b)

Functors

- Functors represent context
- That implement maps that lift normal functions (of type a -> b) to functions over context (of type F a -> F b)

Functors

- Functors represent context
- That implement maps that lift normal functions (of type a $->$ b) to functions over context (of type F a \rightarrow F b)
- IO: input/output
- Maybe: possible failure
- []: nondeterminism

