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Functions

• Consider the successor function:

• succ 0 = 1

• succ 1 = 2

5

4

3

2

6

5

4

3



Functions

• Consider the successor function:

• succ 0 = 1

• succ 1 = 2

5

4

3

2

6

5

4

3



Functions

• Consider the successor function:

• succ 0 = 1

• succ 1 = 2

5

4

3

2

6

5

4

3



Functions

• Consider the successor function:

• succ 0 = 1

• succ 1 = 2

5

4

3

2

6

5

4

3



Functions

• More generally, consider types as our objects of interest.

Int Int
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• More generally, consider types as our objects of interest.
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Maps

• Let us look at maps:

• map succ [] = []

• map succ [0] = [1]

• map succ [1,2] = [2,3]

• map succ [3,4,5] = [4,5,6]

• van Eijck and Unger: The function map takes a function and a
list and returns a list containing the results of applying the
function to the individual list members.

• map :: (a -> b) -> [a] -> [b]
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• The function map takes a function from a to b and returns a
function from [a] to [b].
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Functors

• Wikipedia: Let C and D be categories. A functor F from C
to D is a mapping that

• associates to each object X in C an object F (X ) in D,
• associates to each morphism f : X → Y in C a morphism

F (f ) : F (X )→ F (Y ) in D such that the following two
conditions hold:

• F (idX ) = idF (X ) for every object X in C ,
• F (g ◦ f ) = F (g) ◦ F (f ) for all morphisms f : X → Y
and g : Y → Z in C .

That is, functors must preserve identity morphisms and
composition of morphisms.
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