Monads

October 28, 2019

Monads

October 28, 2019

A burrito

Monads

October 28, 2019

Burritos

- Monads are like burritos

Burritos

- Monads are like burritos
- Monads are not like burritos

Sequencing Actions

1. Get a line
2. Get a line
3. "Return" the lines concatenated together

Sequencing Actions

1. Get a line
2. Get a line
3. "Return" the lines concatenated together

- myAction = do
a <- getLine
b <- getLine
return \$ a ++ b

Sequencing Actions

1. Get a line
2. Get a line
3. "Return" the lines concatenated together

- myAction = do
a <- getLine
b <- getLine
return \$ a ++ b

$$
=(++)<\$>\text { getLine <*> getLine }
$$

Sequencing Actions

1. Get a line
2. Get a line
3. Print the lines concatenated together

- myAction = do
a <- getLine
b <- getLine
return \$ a ++ b

$$
=(++)<\$>\text { getLine <*> getLine }
$$

Sequencing Actions

1. Get a line
2. Get a line
3. Print the lines concatenated together

- myAction = do

$$
\begin{aligned}
& \mathrm{a}<- \text { getLine } \\
& \mathrm{b}<- \text { getLine } \\
& \text { print } \$ \mathrm{a}++\mathrm{b} \\
& \qquad=(++)<\$>\text { getLine }<*>\text { getLine }
\end{aligned}
$$

Sequencing Actions

1. Get a line
2. Get a line
3. Print the lines concatenated together

- myAction = do
a <- getLine
b <- getLine print \$ a ++ b
- How to write this in applicative style?

Sequencing Actions

1. Get a line
2. Get a line
3. Print the lines concatenated together

- myAction = do
a <- getLine
b <- getLine
print \$ a ++ b
= (++) <\$> getLine <*> getLine
- Actions

Sequencing Actions

1. Get a line
2. Get a line
3. Print the lines concatenated together

- myAction = do
a <- getLine
b <- getLine
print \$ a ++ b
= (++) <\$> getLine <*> getLine
- What to do with the results

Sequencing Actions

1. Get a line
2. Get a line
3. Print the lines concatenated together

- myAction = do
a <- getLine
b <- getLine
print \$ a ++ b

$$
\begin{aligned}
\text { myAction' }= & (\backslash x \text { y }->\text { print } \$ \mathrm{x}++\mathrm{y}) \\
& \langle \$>\text { getLine <*> getLine }
\end{aligned}
$$

Sequencing Actions

1. Get a line
2. Get a line
3. Print the lines concatenated together

- myAction = do
a <- getLine
b <- getLine
print \$ a ++ b

$$
\begin{aligned}
\text { myAction' }= & (\backslash x \text { y }->\text { print } \$ \mathrm{x}++\mathrm{y}) \\
& <\$>\text { getLine <*> getLine }
\end{aligned}
$$

- Why doesn't this work?

Sequencing Actions

- ($\backslash \mathrm{x}$ y -> print $\$ \mathrm{x}++\mathrm{y}$) <\$> getLine <*> getLine
- Get a line a, apply ($\backslash \mathrm{x}$ y -> print $\$ \mathrm{x}++\mathrm{y}$) to a (to get ($\backslash \mathrm{y} \rightarrow$ print $\$ \mathrm{a}++\mathrm{y}$)), and wrap it up in an IO box

Sequencing Actions

- ($\backslash \mathrm{x}$ y -> print $\$ \mathrm{x}++\mathrm{y}$) <\$> getLine <*> getLine
- Get a line a, apply ($\backslash \mathrm{x}$ y $->$ print $\$ \mathrm{x}++\mathrm{y}$) to a (to get ($\backslash \mathrm{y}$-> print $\$ \mathrm{a}++\mathrm{y}$)), and wrap it up in an IO box
- Take ($\backslash \mathrm{y}$-> print $\$ \mathrm{a}++\mathrm{y}$) out of the box, get another line b, apply ($\backslash \mathrm{y}$-> print $\$ \mathrm{a}++\mathrm{y}$) to b (to get print \$ a ++ b), and wrap it up in another IO box

Sequencing Actions

- ($\backslash \mathrm{x}$ y -> print $\$ \mathrm{x}++\mathrm{y}$) <\$> getLine <*> getLine
- Get a line a, apply ($\backslash \mathrm{x}$ y $->$ print $\$ \mathrm{x}++\mathrm{y}$) to a (to get ($\backslash \mathrm{y}$-> print $\$ \mathrm{a}++\mathrm{y}$)), and wrap it up in an IO box
- Take ($\backslash \mathrm{y}$-> print $\$ \mathrm{a}++\mathrm{y}$) out of the box, get another line b, apply ($\backslash \mathrm{y}$-> print $\$ \mathrm{a}++\mathrm{y}$) to b (to get print \$ a ++ b), and wrap it up in another IO box
- We never actually ran print $\$ \mathrm{a}++\mathrm{b}$!

Sequencing Actions

- ($\backslash \mathrm{x}$ y -> print $\$ \mathrm{x}++\mathrm{y}$) <\$> getLine <*> getLine
- Get a line a, apply ($\backslash \mathrm{x}$ y $->$ print $\$ \mathrm{x}++\mathrm{y}$) to a (to get ($\backslash \mathrm{y}$-> print $\$ \mathrm{a}++\mathrm{y}$)), and wrap it up in an IO box
- Take ($\backslash \mathrm{y}$-> print $\$ \mathrm{a}++\mathrm{y}$) out of the box, get another line b, apply ($\backslash \mathrm{y}$-> print $\$ \mathrm{a}++\mathrm{y}$) to b (to get print \$ a ++ b), and wrap it up in another IO box
- We never actually ran print $\$ \mathrm{a}++\mathrm{b}$!
- myAction : IO ()

Sequencing Actions

- ($\backslash \mathrm{x}$ y -> print $\$ \mathrm{x}++\mathrm{y}$) <\$> getLine <*> getLine
- Get a line a, apply ($\backslash \mathrm{x}$ y $->$ print $\$ \mathrm{x}++\mathrm{y}$) to a (to get ($\backslash \mathrm{y}$-> print $\$ \mathrm{a}++\mathrm{y}$)), and wrap it up in an IO box
- Take ($\backslash \mathrm{y}$-> print $\$ \mathrm{a}++\mathrm{y}$) out of the box, get another line b, apply ($\backslash \mathrm{y}$-> print $\$ \mathrm{a}++\mathrm{y}$) to b (to get print \$ a ++ b), and wrap it up in another IO box
- We never actually ran print \$ a ++ b!
- myAction :: IO ()
- myAction' :: IO (IO ())

Sequencing Actions

- ($\backslash \mathrm{x}$ y -> print $\$ \mathrm{x}++\mathrm{y}$) <\$> getLine <*> getLine
- Get a line a, apply ($\backslash \mathrm{x}$ y $->$ print $\$ \mathrm{x}++\mathrm{y}$) to a (to get ($\backslash \mathrm{y}$-> print $\$ \mathrm{a}++\mathrm{y}$)), and wrap it up in an IO box
- Take ($\backslash \mathrm{y}$-> print $\$ \mathrm{a}++\mathrm{y}$) out of the box, get another line b, apply ($\backslash \mathrm{y} \rightarrow$ print $\$ \mathrm{a}++\mathrm{y}$) to b (to get print \$ a ++ b), and wrap it up in another IO box
- We never actually ran print $\$ \mathrm{a}++\mathrm{b}$!
- myAction :: IO ()
- myAction' :: IO (IO ())
- To run print \$ a ++ b, we need to take it out of the box

Monads

- Wikipedia: Throughout this article C denotes a category.

A monad on C consists of an endofunctor
$T: C \rightarrow C$ together with two natural transformations:
$\eta: 1_{C} \rightarrow T$ (where 1_{C} denotes the identity functor on C) and $\mu: T^{2} \rightarrow T$ (where T^{2} is the functor $T \circ T$ from C to C).

Monads

- Wikipedia: Throughout this article C denotes a category.

A monad on C consists of an endofunctor
$T: C \rightarrow C$ together with two natural transformations:
$\eta: 1_{C} \rightarrow T$ (where 1_{C} denotes the identity functor on C) and $\mu: T^{2} \rightarrow T$ (where T^{2} is the functor $T \circ T$ from C to C).

- Remember categories:

Monads

- Wikipedia: Throughout this article C denotes a category.

A monad on C consists of an endofunctor
$T: C \rightarrow C$ together with two natural transformations:
$\eta: 1_{C} \rightarrow T$ (where 1_{C} denotes the identity functor on C) and $\mu: T^{2} \rightarrow T$ (where T^{2} is the functor $T \circ T$ from C to C).

- Remember categories:
- category $=$ objects + morphisms
- objects = types
- morphisms $=$ functions

Monads

- Wikipedia: Throughout this article C denotes a category.

A monad on C consists of an endofunctor
$T: C \rightarrow C$ together with two natural transformations:
$\eta: 1_{C} \rightarrow T$ (where 1_{C} denotes the identity functor on C) and $\mu: T^{2} \rightarrow T$ (where T^{2} is the functor $T \circ T$ from C to C).

- endofunctor $=$ functor that maps a category to that same category

Monads

- Wikipedia: Throughout this article C denotes a category.

A monad on C consists of an endofunctor
$T: C \rightarrow C$ together with two natural transformations:
$\eta: 1_{C} \rightarrow T$ (where 1_{C} denotes the identity functor on C) and
$\mu: T^{2} \rightarrow T$ (where T^{2} is the functor $T \circ T$ from C to C).

- endofunctor $=$ functor that maps a category to that same category
- Our only category is Hask, so all functors are endofunctors

Monads

- Wikipedia: Throughout this article C denotes a category.

A monad on C consists of an endofunctor
T together with two natural transformations:
$\eta: 1_{C} \rightarrow T$ (where 1_{C} denotes the identity functor on C) and $\mu: T^{2} \rightarrow T$ (where T^{2} is the functor $T \circ T$ from C to C).

- natural transformation $=$ morphism of functors

Monads

- Wikipedia: Throughout this article C denotes a category.

A monad on C consists of an endofunctor
T together with two natural transformations:
$\eta: 1_{C} \rightarrow T$ (where 1_{C} denotes the identity functor on C) and $\mu: T^{2} \rightarrow T$ (where T^{2} is the functor $T \circ T$ from C to C).

- natural transformation $=$ morphism of functors
- Let us call η unit (or return), and μ join

Monads

- Wikipedia: Throughout this article C denotes a category.

A monad on C consists of an endofunctor
T together with two natural transformations:
$\eta: 1_{C} \rightarrow T$ (where 1_{C} denotes the identity functor on C) and $\mu: T^{2} \rightarrow T$ (where T^{2} is the functor $T \circ T$ from C to C).

- natural transformation $=$ morphism of functors
- Let us call η unit (or return), and μ join
- If Haskell syntax allowed it, we could say

$$
\begin{aligned}
& \text { return }:: \text { Identity }->\mathrm{T} \text { and } \\
& \text { join }:: \mathrm{T}^{2}-\mathrm{T}
\end{aligned}
$$

Monads

- Throughout this article C denotes a category.

A monad on C consists of an endofunctor
T together with two natural transformations:
return :: a -> T a and
join :: T (T a) -> T a.

Sequencing Actions

- myAction' :: IO (IO ())

Sequencing Actions

- myAction' :: IO (IO ())
- join myAction' :: IO ()

Sequencing Actions

- myAction' :: IO (IO ())
- join myAction' :: IO ()
- Prelude Control.Monad> join myAction'

Sequencing Actions

- myAction' :: IO (IO ())
- join myAction' :: IO ()
- Prelude Control.Monad> join myAction' the

Sequencing Actions

- myAction' :: IO (IO ())
- join myAction' :: IO ()
- Prelude Control.Monad> join myAction' the_
dog

Sequencing Actions

- myAction' :: IO (IO ())
- join myAction' :: IO ()
- Prelude Control.Monad> join myAction' the_
dog
"the_dog"

Monads

- class Monad m where

$$
\begin{aligned}
& \text { return }:: a \rightarrow m a \\
& (\gg=):: m a->(a->m b) \rightarrow m b \\
& (\gg):: m a \rightarrow m b->m b \\
& x \gg y=x \gg=\mathrm{m}_{-}->y \\
& \text { fail }:: \text { String }->\mathrm{m} a \\
& \text { fail } \mathrm{msg}=\text { error } \mathrm{msg}
\end{aligned}
$$

Monads

- class (Applicative m) => Monad m where return : $a \rightarrow m$ a
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
$\mathrm{x} \gg \mathrm{y}=\mathrm{x}$ >>= \- -> y
fail :: String -> m a
fail msg = error msg
- Since GHC v7.10, Applicative is a superclass of Monad

Monads

- class (Applicative m) => Monad m where return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
x >> y = x >>= _ -> y
fail :: String -> m a
fail msg = error msg
- What happened to join? What are (>>=), (>>), and fail doing here?

Monads

- (>>=) :: m a $->(\mathrm{a}->\mathrm{mb})->\mathrm{mb}$

Monads

- $(\gg=):: \mathrm{m}$ a $->(\mathrm{a}->\mathrm{mb})->\mathrm{mb}$
- $(=\ll)=$ flip $(\gg=)$
$(=\ll) \quad: \quad(\mathrm{a}->\mathrm{mb}) \rightarrow>\mathrm{m}$ a $->\mathrm{mb}$

Monads

- $(\gg=):: \mathrm{m}$ a $->(\mathrm{a}->\mathrm{mb})->\mathrm{mb}$
- $(=\ll)=$ flip ($\gg=$)
$(=\ll) \quad: \quad(\mathrm{a}->\mathrm{mb}) \rightarrow>\mathrm{m} \mathrm{a}->\mathrm{mb}$

Monads

- (>>=) : : ma $->(\mathrm{a}->\mathrm{m}$ b) $\rightarrow \mathrm{mb}$
- $(=\ll)=$ flip (>>=)
$(=\ll):: \quad(\mathrm{a}->\mathrm{m}$ b) $->\mathrm{m}$ a $->\mathrm{mb}$
- (<*>) : : f (a ->
b) $->f a \rightarrow f b$
- (<\$>) : : (a ->
b) $->$ f $a->f b$

Monads

- (>>=) :: m a -> (a -> m b) -> m b
- (=<<) = flip (>>=)
(=<<) :: (a \quad m b) $\rightarrow>\mathrm{m}$ a $->\mathrm{mb}$
- (<*>) :: f (a -> b) -> f a -> f b
- (<\$>) :: (a b) -> f a $->$ f b
- (=<<) (and (>>=)) are maps for monadic functions

Monads

- (>>=) :: m a -> (a $->\mathrm{m}$ b) $->\mathrm{m}$ b
- (=<<) = flip (>>=)
$(=\ll):: \quad(\mathrm{a}->\mathrm{m}$ b) $\rightarrow \mathrm{m}$ a $->\mathrm{mb}$
- (<*>) :: f (a -> b) -> f a -> f b
- (<\$>) :: (a b) $->$ f $a->f$ b
- (=<<) (and (>>=)) are maps for monadic functions
- Functions that create their own boxes

Monads

- (>>=) :: m a -> (a $->\mathrm{m}$ b) $->\mathrm{m}$ b
- (=<<) = flip (>>=)
$(=\ll):(\mathrm{a}->\mathrm{m}$ b) $\rightarrow \mathrm{m}$ a $->\mathrm{mb}$
- (<*>) :: f (a -> b) -> f a -> f b
- (<\$>) :: (a b) $->$ f $a->f$ b
- (=<<) (and (>>=)) are maps for monadic functions
- Functions that create their own context

Monads

- $g \gg=f=j o i n(f m a p ~ f g):: m a->(a->m b) ~ m b$

Monads

- $g \gg=f=j o i n(f m a p ~ f g): ~ m a->(a->m b) ~ m b$
- $f:: a \rightarrow m b$ is a monadic function

Monads

- $g \gg=f=j o i n(f m a p ~ f g): ~ m a->(a->m b) ~ m b$
- $f: a \quad a \quad m \quad b$ is a monadic function
- fmap f lifts it to type m a $->$ (m b)

Monads

- $g \gg=f=j o i n(f m a p ~ f g): ~ m a->(a->m b) ~ m b$
- $f: a \quad a \quad m \quad b$ is a monadic function
- fmap f lifts it to type $m a->m(m b)$
- g : m a is a value of type a in a box

Monads

- $g \gg=f=j o i n(f m a p ~ f g): ~ m a->(a->m b) ~ m b$
- $f: a \quad a \quad m \quad b$ is a monadic function
- fmap f lifts it to type m a $->$ (m b)
- $g:: m$ a is a value of type a in a box
- fmap $f \mathrm{~g}:: \mathrm{m}$ (m b) outputs a value of type b in two nested boxes

Monads

- $g \gg=f=j o i n(f m a p ~ f g):: m a->(a->m b) ~ m b$
- $f:: a \rightarrow m$ is a monadic function
- fmap f lifts it to type m a $->$ (m b)
- $g:: m$ a is a value of type a in a box
- fmap $f \mathrm{~g}:: \mathrm{m}$ (m b) outputs a value of type b in two nested boxes
- join (fmap $f \mathrm{~g}$) extracts a monadic value of type m b from the outermost box

Monads

- $g \gg=f=j o i n(f m a p ~ f g):: m a->(a->m b) ~ m b$
- $f:: a \rightarrow m$ is a monadic function
- fmap f lifts it to type m a $->$ (m b)
- $g:: m$ a is a value of type a in a box
- fmap $f \mathrm{~g}:: \mathrm{m}$ (m b) outputs a value of type b in two nested boxes
- $g \gg=f$ extracts a value of type a from g and feeds it to f to get a monadic value of type m b

Monads

- $g \gg=f=j o i n(f m a p ~ f g):: m a->(a->m b) ~ m b$
- $f:: a \rightarrow m$ is a monadic function
- fmap f lifts it to type m a $->$ (m b)
- $g:: m$ a is a value of type a in a box
- fmap $f \mathrm{~g}:: \mathrm{m}$ (m b) outputs a value of type b in two nested boxes
- $g \gg=f$ extracts a value of type a from g and feeds it to f to get a monadic value of type m b
- join $\mathrm{x}=\mathrm{x}$ >>= id

Monads

- class (Applicative m) => Monad m where return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
$\mathrm{x} \gg \mathrm{y}=\mathrm{x}$ >>= \- -> y
fail :: String -> m a
fail msg = error msg
- Shorthand for when we don't need to bind the value inside x to evaluate y

Monads

- class (Applicative m) => Monad m where return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
x >> $\mathrm{y}=\mathrm{x}$ >>= \- -> y
fail :: String -> m a
fail msg = error msg
- Error handler for pattern matching in do expressions

