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Single-Agent Epistemic Logic

Let KP informally mean “the agent knows that P (is true)”.
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Single-Agent Epistemic Logic

Let KP informally mean “the agent knows that P (is true)”.

K(P — Q):
KPV =KP:
KP Vv K=P:
LP:

KLP:

“Ann knows that P implies Q"

“either Ann does or does not know P"
“Ann knows whether P is true”

“P is an epistemic possibility”

“Ann knows that she thinks P is
possible”
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Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed face
down on the table and the third
card is put back in the deck.
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Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,

one of the cards is placed face wy Wy
down on the table and the third

card is put back in the deck.

What are the relevant states?

1% Whx

w3 We
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Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,

one of the cards is placed face wy Wy
down on the table and the third

card is put back in the deck.

Ann receives card 3 and card 1

is put on the table
wo Wy

w3 We
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Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,

one of the cards is placed face wy Wy
down on the table and the third

card is put back in the deck.

What information does Ann

have?
wo Wy

w3 We
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Example

Suppose there are three cards:

1, 2 and 3.
Ann is dealt one of the cards,
one of the cards is placed face

down on the table and the third
card is put back in the deck.

What information does Ann
have?

wo I Whx
w3 II II Wp
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Example

Suppose there are three cards:

1, 2 and 3.
Ann is dealt one of the cards, C D
one of the cards is placed face I

down on the table and the third
card is put back in the deck.

What information does Ann C :D
have?

0/
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Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed face
down on the table and the third
card is put back in the deck.

Suppose H; is intended to
mean “Ann has card /"

T; is intended to mean “card i
is on the table”

Eg., V(H1) = {wi, w,}
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T; is intended to mean “card i
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Example

Suppose there are three cards:

1, 2 and 3.
Ann is dealt one of the cards, C D
one of the cards is placed face I

down on the table and the third
card is put back in the deck.
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Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed face
down on the table and the third
card is put back in the deck.

Suppose that Ann receives card
1 and card 2 is on the table.
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Example

Suppose there are three cards:

1, 2 and 3.
Ann is dealt one of the cards, C D
one of the cards is placed face

down on the table and the third
card is put back in the deck.

Suppose that Ann receives card ( )
1 and card 2 is on the table.

w3 We
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Suppose there are three cards:

1, 2 and 3.

Ann is dealt one of the cards, < .: )
one of the cards is placed face
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Example

Suppose there are three cards:

1, 2 and 3.
Ann is dealt one of the cards, C D
one of the cards is placed face

down on the table and the third
card is put back in the deck.

I
M, w1 |= KH; C :)

w2 Ws
w3 II II We
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Example

Suppose there are three cards:

1, 2 and 3.
Ann is dealt one of the cards, C :)
one of the cards is placed face

down on the table and the third
card is put back in the deck.

S @)/
M,Wl’:K—!Tl
) (B

w3 We
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Example

Suppose there are three cards:

1, 2 and 3.
Ann is dealt one of the cards, C D
one of the cards is placed face

down on the table and the third
card is put back in the deck.

|
=

w2 Ws
w3 II II We
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Example

Suppose there are three cards:

1, 2 and 3.
Ann is dealt one of the cards, C :)
one of the cards is placed face

down on the table and the third
card is put back in the deck.

M,wi | K(T2V Ts) C :)

W2 Wy
w3 .i .i We
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Multiagent Epistemic Logic

Many of the examples we are interested in involve more than one
agent!
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Multiagent Epistemic Logic

Many of the examples we are interested in involve more than one
agent!

KaP means “Ann knows P

KgP means “Bob knows P"

> KaKgy: "Ann knows that Bob knows ¢"
» Ka(Kgp V Kg—p): “Ann knows that Bob knows whether ¢

» ~KgKaKg(yp): “Bob does not know that Ann knows that
Bob knows that ¢"
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Example

Suppose there are three cards:

1, 2 and 3.
Ann is dealt one of the cards, C D
one of the cards is placed face

down on the table and the third
card is put back in the deck.

Suppose that Ann receives card ( )
1 and card 2 is on the table.

w3 We
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Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
Bob is given one of the cards
and the third card is put back
in the deck.

Suppose that Ann receives card
1 and Bob receives card 2.

Modal Logic

©

9/37



Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
Bob is given one of the cards
and the third card is put back
in the deck.

Suppose that Ann receives card
1 and Bob receives card 2.

Modal Logic

9/37



Example

Suppose there are three cards:

1, 2 and 3.
Ann is dealt one of the cards,
Bob is given one of the cards w1 I I Wy

and the third card is put back
in the deck.

Suppose that Ann receives card

1 and Bob receives card 2.
W2 I I Whs
w3 = l= We
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Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
Bob is given one of the cards w1 I I

Wy
and the third card is put back
in the deck.
Suppose that Ann receives card
1 and Bob receives card 2.

wo Ws
M, wy ': KB(KAA;[ Vv KA—|A1) I I

w3 I .I We
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Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
Bob is given one of the cards w1 I I

Wy
and the third card is put back
in the deck.
Suppose that Ann receives card
1 and Bob receives card 2.

W Ws
M, wy ': KB(KAA;[ Vv KA—|A1) I I
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Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
Bob is given one of the cards w1 I I

Wy
and the third card is put back
in the deck.
Suppose that Ann receives card
1 and Bob receives card 2.

w2 Ws
M, w1 = Kg(KaA1 V Ka—mAr) I I

w3 I .I We
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Single-Agent Epistemic Logic: The Language
¢ is a formula of Epistemic Logic (£) if it is of the form

o = plop|leny | Kp
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Single-Agent Epistemic Logic: The Language
¢ is a formula of Epistemic Logic (£) if it is of the form

o = plop|leny | Kp

> p € At is an atomic fact.
e "It is raining”
e "“The talk is at 2PM"
e "“The card on the table is a 7 of Hearts”
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Single-Agent Epistemic Logic: The Language
¢ is a formula of Epistemic Logic (£) if it is of the form

o = plop|leny | Kp

v

p € At is an atomic fact.

v

The usual propositional language (£o)

v

K is intended to mean “The agent knows that ¢ is true”.

v

The usual definitions for —, Vv, <+ apply

v

Define Ly as - K-
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Single-Agent Epistemic Logic: The Language
¢ is a formula of Epistemic Logic (£) if it is of the form

o = plop|leny | Kp

K(p — q): “Ann knows that p implies ¢"
KpV —Kp:
KpV K=p:
Lp:
KLyp:

Modal Logic 10/37



Single-Agent Epistemic Logic: The Language
¢ is a formula of Epistemic Logic (£) if it is of the form

o = plop|leny | Kp

K(p — q): “Ann knows that p implies ¢"
Kp V —Kp: “either Ann does or does not know p"
KpV K=p: “Ann knows whether p is true”
Lp:
KLyp:

Modal Logic 10/37



Single-Agent Epistemic Logic: The Language
¢ is a formula of Epistemic Logic (£) if it is of the form
= ploplend | Ke
K(p — q): “Ann knows that p implies ¢"

Kp V —Kp: “either Ann does or does not know p"
KpV K=p: “Ann knows whether p is true”

Lyp: “p is an epistemic possibility”
KLp: "Ann knows that she thinks ¢ is
possible”
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Single-Agent Epistemic Logic: Kripke Models

M= (W,R,V)

» W £ () is the set of all relevant scenarios (states of affairs,
possible worlds)

» RC W x W is the epistemic accessibility relation:
wRv provided “state v is epistemically accessible for the agent
from state w”

» VAt — (W) is a valuation function assigning atomic
sentences to states

s
11/37
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M, w = ¢ means “p is a correct description of some aspect of the
scenario w"
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M, w = ¢ means “p is a correct description of some aspect of the
scenario w"

“An agent is informed that ¢ is true if ¢ is true throughout the
agent’s current range of possibilities”.

M, w = Kip:

> wR;v if "everything i knows in state w is true in v

» wR;v if "agent i has the same experiences and memories in
both w and v"

» wR;v if “agent i has cannot rule-out v (given her evidence
and observations)”

» wR;v if “agent i is in the same local state in w and v"

» wR;v if “agent i has the same information in w and v"
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Logical Omniscience

Fact: ¢ is valid then K is valid
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Logical Omniscience

Fact: Ko A Kip — K(p A ) is valid on all Kripke frames
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Logical Omniscience

Fact: If ¢ — 9 is valid then Ko — K1 is valid

I —
Modal Logic 13/37



Logical Omniscience

Fact: K(¢ — ¢) — (Ko — Kv) is valid on all Kripke frames.
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Logical Omniscience

Fact: ¢ <> 1 is valid then K¢ <> K¢ is valid
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Modal Formula ‘ Property ‘ Philosophical Assumption
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Modal Formula ‘ Property ‘ Philosophical Assumption
Kle—1¢) = (Ke—Ky)| — | Logical Omniscience
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Modal Formula ‘ Property ‘ Philosophical Assumption

Kle = ¢) = (Ko = K) —
Kp — ¢ Reflexive

Logical Omniscience
Truth
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Modal Formula ‘ Property ‘ Philosophical Assumption
K(e = ¢) = (Ko — Kv) — Logical Omniscience
Kp — ¢ Reflexive Truth
Ko — KKy Transitive Positive Introspection
Ky — K=Ky Euclidean Negative Introspection
-KL Serial Consistency
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Unawareness

Why would an agent not know some fact ¢? (i.e., why would
—Kip be true?)
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Unawareness

Why would an agent not know some fact ¢? (i.e., why would
—Kip be true?)

> The agent may or may not believe ¢, but has not ruled out all
the —p-worlds

> The agent may believe ¢ and ruled-out the —-worlds, but
this was based on “bad” evidence, or was not justified, or the
agent was “epistemically lucky” (eg., Gettier cases),...

» The agent has not yet entertained possibilities relevant to the
truth of ¢ (the agent is unaware of ).
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Can we model unawareness in state-space models?
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Can we model unawareness in state-space models?

E. Dekel, B. Lipman and A. Rustichini. Standard State-Space Models Preclude
Unawareness. Econometrica, 55:1, pp. 159 - 173 (1998).
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Sherlock Holmes

While Watson never reports it, Sherlock Holmes once
noted an even more curious incident, that of the dog that
barked and the cat that howled in the night.
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did not Howl, Holmes replied “that is the curious incident
to which I refer.”
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barked and the cat that howled in the night. When
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Sherlock Holmes

While Watson never reports it, Sherlock Holmes once
noted an even more curious incident, that of the dog that
barked and the cat that howled in the night. When
Watson objected that the dog did not bark and the cat
did not Howl, Holmes replied “that is the curious incident
to which | refer.” Holmes knew that this meant that no
one, neither man nor dog, had intruded on the premises
the previous night. For had a man intruded, the dog
would have barked. Had a dog intruded, the cat would
have howled. Hence the lack of either of these two
signals means that there could not have been a human or
canine intruder.
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Modeling Watson's Unawareness

w1

w2 w3
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Modeling Watson's Unawareness

» Let E = {wsy} be the event that there was an
intruder.
» K(E) = {wy} (at wp, Watson knows there is wy
a human intruder) and —K(E) = {wi, w3}
» K(—K(E)) = {ws} (at w3, Watson knows
that she does not know E), and
—K(=K(E)) = {w1, w2} w2 w3
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Modeling Watson's Unawareness

» Let E = {wy} be the event that there was an
intruder.

» K(E) = {wy} (at wp, Watson knows there is wy
a human intruder) and —K(E) = {wi, w3}
» K(—K(E)) = {ws} (at w3, Watson knows
that she does not know E), and
—K(=K(E)) = {w1, wn} wo w3
» —K(E)N—K(—K(E)) = {w1} and, in fact,
NZ1(=K) (E) = {w1}
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Modeling Watson's Unawareness

» E = {WQ}

> K(E) = {na}, —K(E) = {w1, ws}

> K(=K(E)) = {ws},
—K(=K(E)) = {w1, w2}

> —K(E)N —K(~K(E)) = {wi}, w, ”
NEL(KY(E) = {w)

Let U(F) = N, (—K)/(F). Then,
> U0) = U(W) = U({{m}) = U({wz, ws}) =0
» U(E) = U({ws}) = U({w1, ws}) = U({wi, wo} = {w1}

w1
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Modeling Watson's Unawareness

» E = {WQ}

> K(E) = {na}, —K(E) = {w1, ws}

> K(=K(E)) = {ws},
—K(=K(E)) = {w1, w2}

> —K(E)N —K(~K(E)) = {wi}, w, ”
NEL(KY(E) = {w)

Let U(F) = N, (—K)/(F). Then,

> U0) = U(W) = U({{m}) = U({wz, ws}) =0

» U(E) = U({ws}) = U({w1, ws}) = U({wi, wo} = {w1}
Then, U(E) = {w1} and U(U(E)) = U({wm1}) =0

Modal Logic 18/37
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Properties of Unawareness

1. Up = (nKp A =K=Kyp)
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I —
Properties of Unawareness
1. Up = (nKp A =K=Kyp)
2. 7 KUp

3. Up — UUyp
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I —
Properties of Unawareness
1. Up = (mKp A =K=Kp)
2. 7 KUp

3. Up — UUyp

Theorem. In any logic where U satisfies the above axiom
schemes, we have
1. If K satisfies Necessitation (from ¢ infer Ky), then for all
formulas ¢, =Ugp is derivable (the agent is aware of
everything); and
2. If K satisfies Monotonicity (from ¢ — v infer K — K1),
then for all ¢ and ¢, Up — =K1 is derivable (if the agent is
unaware of something then the agent does not know
anything).
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B. Schipper. Online Bibliography on Models of Unawareness. http://www.
econ.ucdavis.edu/faculty/schipper/unaw.htm.

J. Halpern. Alternative semantics for unawareness. Games and Economic Be-
havior, 37, 321-339, 2001.
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Multi-agent Epistemic Logic

The Language: ¢ = p| ~¢ | AP | Ky
Kripke Models: M = (W,R, V) and w € W
Truth: M, w = ¢ is defined as follows:

» M,w = piff w e V(p) (with p € At)

> Myw =g if Myw £ @

» MiwlE oAy if MywE @ and M,w =1

» M,w [= Ky if for each v € W, if wRv, then M,v |= ¢
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Multi-agent Epistemic Logic

The Language: ¢ = p| ¢ | @AY | Kip with i€ A
Kripke Models: M = (W,{R;}ica,V) and w € W
Truth: M, w = ¢ is defined as follows:

» M,w = piff w e V(p) (with p € At)

> Myw =g if Myw £ @

» MiwlE oAy if MywE @ and M,w =1

» M,w = Kjp if for each v € W, if wR;v, then M, v |E ¢
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Multi-agent Epistemic Logic

> K;Kpp: “Ann knows that Bob knows ¢"
» Ki(Kpp V Kp—p): “Ann knows that Bob knows whether ¢

» = KpK,Kp(p): "Bob does not know that Ann knows that Bob
knows that ¢"
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b Ti, T2
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Ann does not know that P
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Ann does not know that P, but she believes that =P
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Ann does not know that P, but she believes that =P
is true to degree r.
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Combining Logics of Knowledge and Belief

M = (W, {~i}ica;{Ri}tica, V) where
» W #£ () is a set of states;
» each ~; is an equivalence relation on W,

» each R; is a serial, transitive, Euclidean relation on W'; and

V is a valuation function.

v
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Combining Logics of Knowledge and Belief

M = (W, {~i}tica,{Ri}tica, V) where
» W #£ () is a set of states;
» each ~; is an equivalence relation on W,
» each R; is a serial, transitive, Euclidean relation on W'; and

» V is a valuation function.
What is the relationship between knowledge (K;) and believe (B;)?
» Each K; is S5

S
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Combining Logics of Knowledge and Belief

M = (W, {~i}tica,{Ri}tica, V) where
» W #£ () is a set of states;
» each ~; is an equivalence relation on W,
» each R; is a serial, transitive, Euclidean relation on W'; and

» V is a valuation function.
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Combining Logics of Knowledge and Belief
M = (W, {~i}tica, {Ri}iea, V) where
» W #£ () is a set of states;
» each ~; is an equivalence relation on W,

» each R; is a serial, transitive, Euclidean relation on W'; and

» V is a valuation function.

What is the relationship between knowledge (K;) and believe (B;)?
» Each K; is S5
» Each B; is KD45
> Kip — Bip? “knowledge implies belief”
> Bip — BiKijp? "positive certainty”
> Bip = KiBijg?

I —
Modal Logic 25/37



An lIssue

» Suppose that p is something you are certain of (you believe it
with probability one), but is false: —=p A Bp
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knowledge implies believe and 4. positive certainty leads to a
contradiction.
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» Suppose that p is something you are certain of (you believe it
with probability one), but is false: —=p A Bp

» Assuming 1. B satisfies KD45, 2. K satisfies S5, 3.
knowledge implies believe and 4. positive certainty leads to a
contradiction.

» Bp — BKp
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An lIssue

» Suppose that p is something you are certain of (you believe it
with probability one), but is false: —=p A Bp

» Assuming 1. B satisfies KD45, 2. K satisfies S5, 3.
knowledge implies believe and 4. positive certainty leads to a
contradiction.

» Bp — BKp
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» Suppose that p is something you are certain of (you believe it
with probability one), but is false: —=p A Bp

» Assuming 1. B satisfies KD45, 2. K satisfies S5, 3.
knowledge implies believe and 4. positive certainty leads to a
contradiction.

» Bp — BKp
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An lIssue

» Suppose that p is something you are certain of (you believe it
with probability one), but is false: —=p A Bp

» Assuming 1. B satisfies KD45, 2. K satisfies S5, 3.
knowledge implies believe and 4. positive certainty leads to a
contradiction.

» Bp — BKp
> =p — - Kp - K-Kp — B-Kp
» So, BKp A B—Kp also holds, but this contradictions

By — =B—yp.
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J. Halpern. Should Knowledge Entail Belief?. Journal of Philosophical Logic,
25:5, 1996, pp. 483-494.
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Adding Beliefs

Epistemic Models: M = (W, {~}ica, V)

Truth: M, w = ¢ is defined as follows:

v

M, w = piff w e V(p) (with p € At)

M, w = —pif M,w @

MwEeAYiIf M,w=@and M,w =1
M, w | K;p if for each v € W, if w~;v, then M,v |= ¢

v

v

v

Modal Logic 28/37



Adding Beliefs

Epistemic-Doxastic Models: M = (W, {~;}ica, {=Xiticea, V)

Truth: M, w = ¢ is defined as follows:
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M, w = piff w e V(p) (with p € At)

M, w = —pif M,w @
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Adding Beliefs
Epistemic-Doxastic Models: M = (W, {~;}ica, {=Xi}tiea, V)

Plausibility Relation: <;C W x W. w =; v means

“v is at least as plausibile as w.”
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Adding Beliefs
Epistemic-Doxastic Models: M = (W, {~;}ica, {=Xi}tiea, V)

Plausibility Relation: <;C W x W. w =; v means

“v is at least as plausibile as w.”

Properties of <;: reflexive, transitive, and well-founded.

Most Plausible: For X C W, let
Min<,(X)={veW |v=;wforallwe X }

Assumptions:
1. plausibility implies possibility. if w <; v then w ~; v.
2. locally-connected: if w ~; v then either w <; v or v <; w.
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Adding Beliefs

Epistemic-Doxastic Models: M = (W, {~;}ica, {=i}ica, V)
Truth: M, w = ¢ is defined as follows:

» M,w = piff w e V(p) (with p € At)

M,w = —pif Myw ¢
MwEeAYIf M wlEpand M,wE Y
M, w | Kjp if for each v € W, if w~jv, then M,v |= ¢

M, w = Bjp if for each v € Min<,([w];), M,v = ¢
[w]i = {v | w ~j v} is the agent's information cell.

v

v

v

v
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Grades of Doxastic Strength

Vi

Vo w Vo
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Vi

Vo w Vo

Suppose that w is the current state.

» Belief (BP)
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Grades of Doxastic Strength

Vo w

Vi V2

Suppose that w is the current state.

» Belief (BP)
> Robust Belief (CJP)
» Strong Belief (B*P)
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Grades of Doxastic Strength

Vi

Vo w Vo

Suppose that w is the current state.

v

Belief (BP)

Robust Belief (CJP)
Strong Belief (B°P)
Knowledge (KP)

v

v

v
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Conditional Beliefs

> Wi~ Wy ~ W3 ) EEEE—

o W3

oW1 o Wo
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Conditional Beliefs

> Wi~ Wy ~ W3 ) EEEE—

» wi 2wy and wo X wy (wy and wp
are equi-plausbile)

» wi < w3 (wp = wz and wz A wp) oW
» wy < w3 (wp X w3 and wz A wp) oWl oWy
| —
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Conditional Beliefs

> Wi~ Wy ~ W3 ) EEEE—

» wi 2wy and wo X wy (wy and wp
are equi-plausbile)

» wi < w3 (wp = wz and wz A wp) o3
» wy < w3 (wp X w3 and wz A wp) oWl eWs
> {w1, wp} C Min<([wi]) NS
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Conditional Beliefs

Bf1): Agent i believes v, given that o is true.

I —
Modal Logic 30/37



Conditional Beliefs

Bf1: Agent i believes 1, given that ¢ is true.
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Conditional Beliefs

1

Bf1): Agent i believes v, given that o is true.

M, w = Bfy if for each v € Min< ([w]i N [¢]), M, v = ¢
where [o] ={w | M, w |= ¢}
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Example
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Success: B¢
Knowledge entails belief Kip — BY ¢
Full introspection: Bfy — KiBfYy and —Bfy — Ki—Bf Y

Cautious Monotonicity:  (Bfa A Bf) — B a
Rational Monotonicity:  (Bfa A =Bf=j) — B;PAﬂa
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Rational Monotonicity, |

Rational Monotonicity: (BYa A —Bf—3) — B«

R. Stalnaker. Nonmonotonic consequence relations. Fundamenta Informaticae,
21: 721, 1994.
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Rational Monotonicity, |

Rational Monotonicity: (BYa A —Bf—3) — B«

R. Stalnaker. Nonmonotonic consequence relations. Fundamenta Informaticae,
21: 721, 1994.

Consider the three composers: Verdi, Bizet, and Satie, and suppose
that we initially accept (correctly but defeasibly) that Verdi is
Italian /(v), while Bizet and Satie are French (F(b) A F(s)).
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Rational Monotonicity, I

Suppose now that we are told by a reliable (but not infallible!)
source of information that that Verdi and Bizet are compatriots
(C(v, b)). This leads us no longer to endorse either the proposition
that Verdi is Italian (because he could be French), or that Bizet is
French (because he could be Italian); but we would still draw the
defeasible consequence that Satie is French, since nothing that we
have learned conflicts with it.

BC(bF(s)
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Rational Monotonicity, Ill

Now consider the proposition C(v,s) that Verdi and Satie are
compatriots. Before learning that C(v, b) we would be inclined to
reject the proposition C(v,s) because we accept /(v) and F(s),
but after learning that Verdi and Bizet are compatriots, we can no
longer endorse /(v), and therefore no longer reject C(v,s).

ﬁBC(V’b)ﬁC(V, S)
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Rational Monotonicity, 1V

However, if we added C(v,s) to our stock of beliefs, we would lose
the inference to F(s): in the context of C(v, b), the proposition
C(v,s) is equivalent to the statement that all three composers
have the same nationality. This leads us to suspend our belief in

the proposition F(s).

ﬁBC(v,b)/\C(v,s)F(s)
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Rational Monotonicity, 1V

However, if we added C(v,s) to our stock of beliefs, we would lose
the inference to F(s): in the context of C(v, b), the proposition
C(v,s) is equivalent to the statement that all three composers
have the same nationality. This leads us to suspend our belief in
the proposition F(s).

ﬁBC(v,b)/\C(v,s)F(s)

BC(EIF(s) and ~BC("E)=C(v,s) but ~BC(VEINC(vs)F(s)
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Next: Common Knowledge
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