Monoids

November 11, 2019

Functions

- Consider the addition function:

Functions

- Consider the addition function:
- 1 + 1 = 2

Functions

- Consider the addition function:
- $1+1=2$
- $2+2=4$

Functions

- Consider the addition function:
- $1+1=2$
- $2+2=4$
- (+) :: Num a => a -> a -> a

Functions

- Consider the addition function:
- $1+1=2$
- $2+2=4$
- (+) :: Int -> Int -> Int

Functions

- Addition by 0 :

Functions

- Addition by 0 :
- $0+\mathrm{x}=\mathrm{x}$

Functions

- Addition by 0 :
- $0+x=x$
- $\mathrm{x}+0=\mathrm{x}$

Functions

- Addition by 0 :
- $0+x=x$
- $\mathrm{x}+0=\mathrm{x}$
- Addition of three numbers:

Functions

- Addition by 0 :
- $0+x=x$
- $\mathrm{x}+0=\mathrm{x}$
- Addition of three numbers:
- $(x+y)+z=x+(y+z)$

Functions

- Addition by 0 :
- Right Identity: $0+\mathrm{x}=\mathrm{x}$
- Left Identity: $\mathrm{x}+0=\mathrm{x}$
- Addition of three numbers:
- Associativity: $(\mathrm{x}+\mathrm{y})+\mathrm{z}=\mathrm{x}+(\mathrm{y}+\mathrm{z})$

Monoids

- Wikipedia: Suppose that S is a set and \bullet is some binary operation $S \times S \rightarrow S$, then S with • is a monoid if it satisfies the following two axioms:
- Associativity: For all a, b and c in S, the equation $(a \bullet b) \bullet c=a \bullet(b \bullet c)$ holds.
- Identity element: There exists an element e in S such that for every element a in S, the equations $e \bullet a=a \bullet e=a$ hold.

Monoids

- Suppose that m is a type and mappend is some binary function m -> m $->\mathrm{m}$, then m with mappend is a monoid if it satisfies the following two axioms:
- Associativity: For all x, y and z in m , the equation (x 'mappend' y) 'mappend' $z=$ x 'mappend' (y 'mappend' z) holds.
- Identity element: There exists an element mempty in m such that for every element x in m , the equations mempty 'mappend' $\mathrm{x}=\mathrm{x}$ 'mappend' mempty $=\mathrm{x}$ hold.

Monoids

- class Monoid m where
mempty :: m
mappend :: m -> m -> m
mconcat :: [m] -> m
mconcat $=$ foldr mappend mempty

Monoids

- class Monoid m where

```
mempty :: m
    mappend :: m -> m -> m
    mconcat :: [m] -> m
    mconcat = foldr mappend mempty
```


Lists are Monoids

- instance Monoid [a] where
mempty = []
mappend $=(++)$

Lists are Monoids

- instance Monoid [a] where
mempty = []
mappend $=(++)$
- mconcat $=$ concat

Lists of a are Monoids

- instance Monoid [a] where
mempty = []
mappend $=(++)$
- mconcat $=$ concat

Strings are Monoids

- instance Monoid String where
mempty = ""
mappend $=(++)$
- mconcat $=$ concat

Languages are Monoids

- instance Monoid String where
mempty = ""
mappend $=(++)$
- mconcat $=$ concat

Strings are Monoids

- "" ++ "the" = "the"

Strings are Monoids

- "" ++ "the" = "the"
- "the" ++ "" = "the"

Strings are Monoids

- "" ++ "the" = "the"
- "the" ++ "" = "the"
- ("the_" ++ "dog_") ++ "barked" = "the_" ++ ("dog_" ++ "barked")

Monoids

- Other examples of monoids:

Monoids

- Other examples of monoids:
- Numbers (Product, Sum)

Monoids

- Other examples of monoids:
- Numbers (Product, Sum)
- Bool (Any, All)

Monoids

- Other examples of monoids:
- Numbers (Product, Sum)
- Bool (Any, All)
- Ordering

Monoids

- Other examples of monoids:
- Numbers (Product, Sum)
- Bool (Any, All)
- Ordering
- Maybe

Monoids

- Other examples of monoids:
- Numbers (Product, Sum)
- Bool (Any, All)
- Ordering
- Maybe
- Functions (r -> r) (Endo)

Functions are Monoids

- instance Monoid (a -> a) where

$$
\begin{aligned}
& \text { mempty }=\text { id } \\
& \text { mappend }=(.)
\end{aligned}
$$

Functions are Monoids

- instance Monoid (Endo a) where

$$
\begin{aligned}
& \text { mempty }=\text { Endo id } \\
& \text { Endo g 'mappend' Endo } f=\text { Endo (} \mathrm{g} . \mathrm{f})
\end{aligned}
$$

Functions are Monoids

- instance Monoid (Endo a) where

$$
\begin{aligned}
& \text { mempty }=\text { Endo id } \\
& \text { Endo } g \text { 'mappend' Endo } f=\text { Endo }(g . \quad f)
\end{aligned}
$$

- newtype Endo a = Endo \{ appEndo : $\mathrm{a} \rightarrow \mathrm{a}$ \}

Functions are Monoids

- id . f = f

Functions are Monoids

- id . $f=f$
- f . id = f

Functions are Monoids

- id . f = f
- f . id = f
- (f . g) . h = f . (g . h)

Folds

- mconcat :: Monoid m => [m] -> m
- mconcat $=$ foldr mappend mempty

Folds

- mconcat : : Monoid m => [m] -> m
- mconcat combines a list of monoid values by mappending them

Folds

- mconcat :: Monoid m => [m] -> m
- mconcat combines a list of monoid values by mappending them
- What if we want to combine a sequence of arbitrary values?

Folds

- mconcat :: Monoid m => [m] -> m
- mconcat combines a list of monoid values by mappending them
- What if we want to combine a sequence of arbitrary values?
- foldMap : : (Foldable t, Monoid m) $=>(\mathrm{a} \rightarrow \mathrm{m})$ $\rightarrow \mathrm{t}$ a -> m

Folds

- mconcat :: Monoid m => [m] -> m
- mconcat combines a list of monoid values by mappending them
- What if we want to combine a sequence of arbitrary values?
- foldMap : : (Foldable t, Monoid m) => (a -> m) -> t a \rightarrow m
- Sequence (e.g. list, tree)

Folds

- mconcat :: Monoid m => [m] -> m
- mconcat combines a list of monoid values by mappending them
- What if we want to combine a sequence of arbitrary values?
- foldMap : : (Foldable t, Monoid m) $=>$ ($\mathrm{a} \rightarrow \mathrm{m}$) $\rightarrow \mathrm{t}$ a -> m
- Sequence (e.g. list, tree)
- Function that converts arbitrary values to monoid values

Folds

- mconcat :: Monoid m => [m] -> m
- mconcat combines a list of monoid values by mappending them
- What if we want to combine a sequence of arbitrary values?
- foldMap : : (Foldable t, Monoid m) $=>$ ($\mathrm{a} \rightarrow \mathrm{m}$) $\rightarrow \mathrm{t}$ a -> m
- Sequence (e.g. list, tree)
- Function that converts arbitrary values to monoid values
- foldMap $=$ foldr (mappend . f) mempty

Folds

- mconcat : : Monoid m => [m] -> m
- mconcat combines a list of monoid values by mappending them
- What if we want to combine a sequence of arbitrary values?
- foldMap : : (Foldable t, Monoid m) \Rightarrow ($\mathrm{a} \rightarrow \mathrm{m}$) $\rightarrow \mathrm{t}$ a $\rightarrow \mathrm{m}$
- Sequence (e.g. list, tree)
- Function that converts arbitrary values to monoid values
- foldMap combines a list of arbitrary values by converting them into monoid values and mappending them

Folds

- mconcat :: Monoid m => [m] -> m
- mconcat combines a list of monoid values by mappending them
- What if we want to combine a sequence of arbitrary values?
- foldMap : : (Foldable t, Monoid m) \Rightarrow ($\mathrm{a} \rightarrow \mathrm{m}$) $\rightarrow \mathrm{t}$ a $\rightarrow \mathrm{m}$
- Sequence (e.g. list, tree)
- Function that converts arbitrary values to monoid values
- foldMap combines a list of arbitrary values by converting them into monoid values and mappending them
- What if we don't have a conversion function?

Folds

- mconcat :: Monoid m => [m] -> m
- mconcat combines a list of monoid values by mappending them
- What if we want to combine a sequence of arbitrary values?
- foldMap : : (Foldable t, Monoid m) \Rightarrow ($\mathrm{a} \rightarrow \mathrm{m}$) $\rightarrow \mathrm{t}$ a $\rightarrow \mathrm{m}$
- Sequence (e.g. list, tree)
- Function that converts arbitrary values to monoid values
- foldMap combines a list of arbitrary values by converting them into monoid values and mappending them
- What if we don't have a conversion function?
- :: Foldable t => (a -> Endo b) -> t a -> Endo b

Folds

- mconcat :: Monoid m => [m] -> m
- mconcat combines a list of monoid values by mappending them
- What if we want to combine a sequence of arbitrary values?
- foldMap : : (Foldable t, Monoid m) \Rightarrow ($\mathrm{a} \rightarrow \mathrm{m}$) $\rightarrow \mathrm{t}$ a $\rightarrow \mathrm{m}$
- Sequence (e.g. list, tree)
- Function that converts arbitrary values to monoid values
- foldMap combines a list of arbitrary values by converting them into monoid values and mappending them
- What if we don't have a conversion function?
- :: Foldable t => (a -> b -> b) -> t a -> b -> b

Folds

- mconcat :: Monoid m => [m] -> m
- mconcat combines a list of monoid values by mappending them
- What if we want to combine a sequence of arbitrary values?
- foldMap : : (Foldable t, Monoid m) \Rightarrow ($\mathrm{a} \rightarrow \mathrm{m}$) $\rightarrow \mathrm{t}$ a $\rightarrow \mathrm{m}$
- Sequence (e.g. list, tree)
- Function that converts arbitrary values to monoid values
- foldMap combines a list of arbitrary values by converting them into monoid values and mappending them
- What if we don't have a conversion function?
- :: Foldable t => (a -> b -> b) -> t a -> b -> b
- Accumulator value

Folds

- mconcat :: Monoid m => [m] -> m
- mconcat combines a list of monoid values by mappending them
- What if we want to combine a sequence of arbitrary values?
- foldMap : : (Foldable t, Monoid m) \Rightarrow ($\mathrm{a} \rightarrow \mathrm{m}$) $\rightarrow \mathrm{t}$ a $\rightarrow \mathrm{m}$
- Sequence (e.g. list, tree)
- Function that converts arbitrary values to monoid values
- foldMap combines a list of arbitrary values by converting them into monoid values and mappending them
- What if we don't have a conversion function?
- :: Foldable t $=>$ (a -> b -> b) -> t a $->$ b $->$ b
- Accumulator value
- Function that updates the accumulator with the arbitrary value

Folds

- mconcat : : Monoid m => [m] -> m
- mconcat combines a list of monoid values by mappending them
- What if we want to combine a sequence of arbitrary values?
- foldMap : : (Foldable t, Monoid m) $=>$ ($\mathrm{a} \rightarrow \mathrm{m}$) $\rightarrow \mathrm{t}$ a $\rightarrow \mathrm{m}$
- Sequence (e.g. list, tree)
- Function that converts arbitrary values to monoid values
- foldMap combines a list of arbitrary values by converting them into monoid values and mappending them
- What if we don't have a conversion function?
- :: Foldable t => (a -> b -> b) -> t a -> b -> b
- Accumulator value
- Function that updates the accumulator with the arbitrary value
- Starting accumulator value

Folds

- mconcat : : Monoid m => [m] -> m
- mconcat combines a list of monoid values by mappending them
- What if we want to combine a sequence of arbitrary values?
- foldMap : : (Foldable t, Monoid m) \Rightarrow ($\mathrm{a} \rightarrow \mathrm{m}$) $\rightarrow \mathrm{t}$ a $\rightarrow \mathrm{m}$
- Sequence (e.g. list, tree)
- Function that converts arbitrary values to monoid values
- foldMap combines a list of arbitrary values by converting them into monoid values and mappending them
- What if we don't have a conversion function?
- :: Foldable t => (a -> b -> b) -> t a -> b -> b
- Accumulator value
- Function that updates the accumulator with the arbitrary value
- Starting accumulator value
- Result value

Folds

- mconcat : : Monoid m => [m] -> m
- mconcat combines a list of monoid values by mappending them
- What if we want to combine a sequence of arbitrary values?
- foldMap : : (Foldable t, Monoid m) \Rightarrow ($\mathrm{a} \rightarrow \mathrm{m}$) $\rightarrow \mathrm{t}$ a $\rightarrow \mathrm{m}$
- Sequence (e.g. list, tree)
- Function that converts arbitrary values to monoid values
- foldMap combines a list of arbitrary values by converting them into monoid values and mappending them
- What if we don't have a conversion function?
- foldr : : Foldable t => (a -> b -> b) -> b -> t a -> b
- Accumulator value
- Function that updates the accumulator with the arbitrary value
- Starting accumulator value
- Result value

List Comprehensions

- $[1,2,3,4]=[a+b \mid$
a <- $[0,2]$,
b <- [1,2]]

List Comprehensions

- $[1,2,3,4]=[a+b$ |

$$
a<-[0,2],
$$

$$
b<-[1,2]]
$$

$$
=\mathrm{do}
$$

$$
\mathrm{a}<-[0,2]
$$

$$
b<-[1,2]
$$

$$
\text { return } \$ \mathrm{a}+\mathrm{b}
$$

List Comprehensions

- $[1,2,3,4]=[a+b$ |
a <- $[0,2]$,
b <- $[1,2]$,
even \$ a + b]
$=\mathrm{do}$
a <- [0,2]
b <- [1,2]
return \$ a + b

List Comprehensions

- [2, 4] = [a + b |

$$
a<-[0,2],
$$

$$
\mathrm{b}<-[1,2],
$$

$$
\text { even } \$ \mathrm{a}+\mathrm{b}]
$$

$$
=\mathrm{do}
$$

$$
a<-[0,2]
$$

$$
\mathrm{b}<-[1,2]
$$

$$
\text { return } \$ \mathrm{a}+\mathrm{b}
$$

List Comprehensions

- $[2,4]=[a+b \mid$
a <- [0,2],
b <- $[1,2]$,
even \$ a + b]
$=\mathrm{do}$
a <- [0,2]
b <- [1,2]
guard (even \$ a + b)
return \$ a + b

MonadPluses

- class Monad m => MonadPlus m where mzero :: m a mplus :: m a -> m a -> m a

MonadPluses

- class Monad m => MonadPlus m where

$$
\begin{array}{ll}
\text { mzero : }: ~ m a & \text { (mempty) } \\
\text { mplus : }: ~ m a ~ & \mathrm{~m} \text { a }->\mathrm{m} \text { a (mappend) }
\end{array}
$$

MonadPluses

- class (Monad m, Monoid m a) => MonadPlus m where

$$
\begin{aligned}
& \text { mzero : }: \mathrm{m} \text { a } \quad \text { (mempty) } \\
& \text { mplus :: } \mathrm{m} \text { a }->\mathrm{m} \text { a }->\mathrm{m} \text { a (mappend) }
\end{aligned}
$$

MonadPluses

- class Monad m => MonadPlus m where

$$
\begin{array}{ll}
\text { mzero : }: ~ m a & \text { (mempty) } \\
\text { mplus : }: ~ m a ~ & \mathrm{~m} \text { a }->\mathrm{m} \text { a (mappend) }
\end{array}
$$

Lists are MonadPluses

- instance MonadPlus [] where

$$
\begin{aligned}
& \text { mzero }=[] \\
& \text { mplus }=(++)
\end{aligned}
$$

Guards

- guard :: (MonadPlus m) => Bool -> m ()
guard True = return ()
guard False = mzero

Guards

- $[2,4]=$ do

$$
a<-[0,2]
$$

$$
b<-[1,2]
$$

guard (even \$ a + b)

$$
\text { return } \$ \mathrm{a}+\mathrm{b}
$$

Guards

- $[2,4]=$

$$
\begin{aligned}
& {[0,2] \gg=\backslash \mathrm{a}->\mathrm{do}} \\
& \mathrm{~b}<-[1,2] \\
& \text { guard (even \$ a + b) } \\
& \text { return } \$ \mathrm{a}+\mathrm{b}
\end{aligned}
$$

Guards

- $[2,4]=$

$$
\begin{aligned}
& {[0,2] \gg=\backslash \mathrm{a}->} \\
& {[1,2] \gg=\backslash \mathrm{b}->\text { do }} \\
& \text { guard (even \$ a + b) } \\
& \text { return } \$ \mathrm{a}+\mathrm{b}
\end{aligned}
$$

Guards

- $[2,4]=$

$$
\begin{aligned}
& {[0,2] \gg=\backslash a->} \\
& {[1,2] \gg=\backslash b->} \\
& \text { guard }(\text { even } \$ \mathrm{a}+\mathrm{b}) \gg=\backslash-->\text { do } \\
& \text { return } \$ \mathrm{a}+\mathrm{b}
\end{aligned}
$$

Guards

- $[2,4]=$

$$
\begin{aligned}
& {[0,2] \gg=\backslash \mathrm{a}->} \\
& {[1,2] \gg=\backslash \mathrm{b}->} \\
& \text { guard (even } \$ \mathrm{a}+\mathrm{b}) \gg=\backslash_{-}-> \\
& \text {return } \$ \mathrm{a}+\mathrm{b}
\end{aligned}
$$

Guards

- $[2,4]=$

$$
\begin{aligned}
& \text { concat (map }(\backslash a-> \\
& {[1,2] \gg=\backslash b->} \\
& \text { guard }(\text { even } \$ a+b) \gg=\backslash--> \\
& \text { return } \$ a+b)[0,2])
\end{aligned}
$$

Guards

- $[2,4]=$ concat $[$

$$
\begin{aligned}
& ([1,2] \gg=\backslash \mathrm{b}-> \\
& \text { guard (even } \$ 0+\mathrm{b}) \gg=_{-}-> \\
& \text {return } \$ 0+\mathrm{b}) \\
& ([1,2] \gg=\backslash \mathrm{b}-> \\
& \text { guard (even } \$ 2+\mathrm{b}) \gg=_{-}-> \\
& \text {return } \$ 2+\mathrm{b}) \\
&]
\end{aligned}
$$

Guards

```
- [2,4] = concat [
    concat (map (\b ->
        guard (even $ 0 + b) >>= \_ ->
        return $ 0 + b) [1,2]),
        concat (map (\b ->
            guard (even $ 2 + b) >>= \_ ->
            return $ 2 + b) [1,2])
        ]
```


Guards

- $[2,4]=$ concat [

$$
\begin{aligned}
& \text { concat [(guard (even } \$ 0+1) \gg=_{-}-> \\
& \text {return \$ } 0 \text { + 1) , } \\
& \text { (guard (even } \$ 0+2 \text {) } \gg=_{-}-> \\
& \text {return } \$ 0+2)] \text {, } \\
& \text { concat [(guard (even \$ } 2+1 \text {) >>= \- }-> \\
& \text { return } \$ 2+1 \text {), } \\
& \text { (guard (even \$ } 2+2 \text {) } \gg=_{-}-> \\
& \text {return \$ } 2+2 \text {)] }
\end{aligned}
$$

Guards

- $[2,4]=$ concat [
concat [(guard (even \$ 1) >>= _ ->
return \$ 1),
(guard (even \$ 2) >>= \- ->
return \$ 2)],
concat [(guard (even \$ 3) >>= _ $_{-}$->
return \$ 3),
(guard (even \$ 4) >>= \- ->
return \$ 4)]
]

Guards

- $[2,4]=$ concat [

$$
\begin{aligned}
& \text { concat [(guard False >>= _ -> } \\
& \text { [1]), } \\
& \text { (guard True >>= \- -> } \\
& \text { [2])], } \\
& \text { concat [(guard False >>= _ -> } \\
& \text { [3]), } \\
& \text { (guard True >>= \- -> } \\
& \text { [4])] }
\end{aligned}
$$

Guards

- $[2,4]=$ concat [

$$
\begin{aligned}
\text { concat } & {\left[\left(\text { mzero >>= } \backslash_{-}->\right.\right.} \\
& {[1]), } \\
& (\text { return () >>= } \\
& {[2])], } \\
\text { concat } & {\left[\left(\text { mzero } \gg=\backslash_{-}\right.\right.} \\
& {[3]), } \\
& \left(\text { return }() \gg=\backslash_{-}\right. \\
& {[4])] }
\end{aligned}
$$

Guards

- $[2,4]=$ concat [

$$
\begin{gathered}
\text { concat }\left[\left([] \gg=\backslash_{-}>\right.\right. \\
[1]), \\
\\
\left([()] \gg=\backslash_{-}->\right. \\
[2])], \\
\text { concat }\left[\left([] \gg=\backslash_{-}>\right.\right. \\
[3]), \\
\left([()] \gg=\backslash_{-}>\right. \\
[4])]
\end{gathered}
$$

Guards

- $[2,4]=$ concat [
]

$$
\begin{aligned}
& \text { concat [concat (map (_ -> [1]) []), } \\
& \text { concat (map (_ -> [2]) [()])], } \\
& \text { concat [concat (map (_ -> [3]) []), } \\
& \text { concat (map (_ -> [4]) [()])] }
\end{aligned}
$$

Guards

- $[2,4]=$ concat [

concat	concat
concat	$[[2]]]$,
concat	$[$ concat [],
concat $[[4]]]$	

]

Guards

- $[2,4]=$ concat [concat [[],
[2] $],$
concat [[],
$[4]]$
]

Guards

- $[2,4]=$ concat [[2], [4]]

Guards

- $[2,4]=[2,4]$

