
Functional Programming with Haskell

Kenneth Lai

Brandeis University

September 14, 2022

Announcements

I Ken away next week
I Classes

I Ken teaching on Zoom
I You are still encouraged to come to class in person!

I Student hours
I Fri 9/16 2:15-3:15pm, Ken, remote only
I Tue 9/20 5-6pm, Ken, remote only
I Wed 9/21 11am-noon, Bingyang, hybrid
I Thu 9/22 4-5pm, Ken, remote only
I Fri 9/23 2:15-3:15pm, Bingyang, hybrid

I HW1 due date moved to 9/28

Today’s Plan

I Functional Programming with Haskell

I (we’ll see how far we get...)

I Types in Natural Language

Today’s Plan

I Functional Programming with Haskell

I (we’ll see how far we get...)

I Types in Natural Language

Today’s Plan

I Functional Programming with Haskell

I (we’ll see how far we get...)

I Types in Natural Language

Types, in Words

τ ::= e | t | τ → τ

I A type can be:
I A basic type (e, t, etc.)
I A functional type τ1 → τ2, where τ1 and τ2 are types

I This is the type of a function whose input is of type τ1 and
output is of type τ2

Types, in Words

τ ::= e | t | τ → τ

I A type can be:
I A basic type (e, t, etc.)
I A functional type τ1 → τ2, where τ1 and τ2 are types

I This is the type of a function whose input is of type τ1 and
output is of type τ2

Computational Semantics
Day 1: Getting Started with Haskell + Inference

Engine for NL

Jan van Eijck1 & Christina Unger2

1CWI, Amsterdam, and UiL-OTS, Utrecht, The Netherlands
2CITEC, Bielefeld University, Germany

ESSLLI 2011, Ljubljana

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 1 / 82

Functional programming with Haskell

Haskell is functional

A program consists entirely of functions.

• The main program itself is a function with the program’s input as
argument and the program’s output as result.

• Typically the main function is defined in terms of other functions,
which in turn are defined in terms of still more functions, until at the
bottom level the functions are language primitives.

Running a Haskell program consists in evaluating expressions (basically
functions applied to arguments).

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 19 / 82

Functional programming with Haskell

A shift in thinking

Imperative thinking:

• Variables are pointers to storage locations whose value can be
updated all the time.

• You give a sequence of commands telling the computer what to do
step by step.

Examples:

• initialize a variable examplelist of type integer list,
then add 1, then add 2, then add 3

• in order to compute the factorial of n, initialize an integer variable f

as 1, then for all i from 1 to n, set f to f×i

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 20 / 82

Functional programming with Haskell

A shift in thinking

Functional thinking:

• Variables are identifiers for an immutable, persistent value.

• You tell the computer what things are.

Examples:

• examplelist is a list of integers containing the elements
1, 2, and 3

• the factorial of n is the product of all integers from 1 to n

factorial :: Int -> Int

factorial n = product [1..n]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 21 / 82

Functional programming with Haskell

A shift in thinking

Functional thinking:

• Variables are identifiers for an immutable, persistent value.

• You tell the computer what things are.

Examples:

• examplelist is a list of integers containing the elements
1, 2, and 3

• the factorial of n is the product of all integers from 1 to n

factorial :: Int -> Int

factorial n = product [1..n]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 21 / 82

Functional programming with Haskell

A shift in thinking

Stop thinking in variable assignments, sequences and loops.

Start thinking in functions, immutable values and recursion.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 22 / 82

Characteristics of Haskell

1. “Functions are first-class citizens”
I “Functions may be passed as arguments to other functions and

also can be returned as the result of some function”

2. Recursion

3. Lazy evaluation
I “Arguments of functions are only evaluated when needed, if at

all”

Characteristics of Haskell

1. “Functions are first-class citizens”
I “Functions may be passed as arguments to other functions and

also can be returned as the result of some function”

2. Recursion

3. Lazy evaluation
I “Arguments of functions are only evaluated when needed, if at

all”

Characteristics of Haskell

1. “Functions are first-class citizens”
I “Functions may be passed as arguments to other functions and

also can be returned as the result of some function”

2. Recursion

3. Lazy evaluation
I “Arguments of functions are only evaluated when needed, if at

all”

Functional programming with Haskell

Why use Haskell?

• Haskell allows for abstract, high order programming.
(Ideally, more thinking and less writing and debugging.)

• Haskell is based on the lambda calculus, therefore the step from
formal semantics theory to implementation is very small.

• Haskell offers you a new perspective on programming, it is powerful,
and it is fun.

• The type system behind Haskell is close related to the type system
behind Montague grammar.

• Your Haskell understanding will influence the way you understand
natural language semantics.

Haskell is rich enough to be useful. But above all, Haskell is a language in
which people play. In the end, we want to infect your brain, not your hard
drive.

(Simon Peyton-Jones)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 24 / 82

Functional programming with Haskell

Why use Haskell?

• Haskell allows for abstract, high order programming.
(Ideally, more thinking and less writing and debugging.)

• Haskell is based on the lambda calculus, therefore the step from
formal semantics theory to implementation is very small.

• Haskell offers you a new perspective on programming, it is powerful,
and it is fun.

• The type system behind Haskell is close related to the type system
behind Montague grammar.

• Your Haskell understanding will influence the way you understand
natural language semantics.

Haskell is rich enough to be useful. But above all, Haskell is a language in
which people play. In the end, we want to infect your brain, not your hard
drive.

(Simon Peyton-Jones)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 24 / 82

Functional programming with Haskell

Why use Haskell?

• Haskell allows for abstract, high order programming.
(Ideally, more thinking and less writing and debugging.)

• Haskell is based on the lambda calculus, therefore the step from
formal semantics theory to implementation is very small.

• Haskell offers you a new perspective on programming, it is powerful,
and it is fun.

• The type system behind Haskell is close related to the type system
behind Montague grammar.

• Your Haskell understanding will influence the way you understand
natural language semantics.

Haskell is rich enough to be useful. But above all, Haskell is a language in
which people play. In the end, we want to infect your brain, not your hard
drive.

(Simon Peyton-Jones)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 24 / 82

Functional programming with Haskell

Why use Haskell?

• Haskell allows for abstract, high order programming.
(Ideally, more thinking and less writing and debugging.)

• Haskell is based on the lambda calculus, therefore the step from
formal semantics theory to implementation is very small.

• Haskell offers you a new perspective on programming, it is powerful,
and it is fun.

• The type system behind Haskell is close related to the type system
behind Montague grammar.

• Your Haskell understanding will influence the way you understand
natural language semantics.

Haskell is rich enough to be useful. But above all, Haskell is a language in
which people play. In the end, we want to infect your brain, not your hard
drive.

(Simon Peyton-Jones)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 24 / 82

Functional programming with Haskell

Why use Haskell?

• Haskell allows for abstract, high order programming.
(Ideally, more thinking and less writing and debugging.)

• Haskell is based on the lambda calculus, therefore the step from
formal semantics theory to implementation is very small.

• Haskell offers you a new perspective on programming, it is powerful,
and it is fun.

• The type system behind Haskell is close related to the type system
behind Montague grammar.

• Your Haskell understanding will influence the way you understand
natural language semantics.

Haskell is rich enough to be useful. But above all, Haskell is a language in
which people play. In the end, we want to infect your brain, not your hard
drive.

(Simon Peyton-Jones)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 24 / 82

Functional programming with Haskell

Why use Haskell?

• Haskell allows for abstract, high order programming.
(Ideally, more thinking and less writing and debugging.)

• Haskell is based on the lambda calculus, therefore the step from
formal semantics theory to implementation is very small.

• Haskell offers you a new perspective on programming, it is powerful,
and it is fun.

• The type system behind Haskell is close related to the type system
behind Montague grammar.

• Your Haskell understanding will influence the way you understand
natural language semantics.

Haskell is rich enough to be useful. But above all, Haskell is a language in
which people play. In the end, we want to infect your brain, not your hard
drive.

(Simon Peyton-Jones)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 24 / 82

Getting started

Get GHCup:

I https://www.haskell.org/ghcup/

This includes the Glasgow Haskell Compiler (GHC) together with
standard libraries and the interactive environment GHCi.

https://www.haskell.org/ghcup/

Using the Book Code

I Formerly available at the book website:
http://www.computational-semantics.eu

I Currently available on LATTE

Using the Book Code

module FPH

where

import Data.List

import Data.Char

Functional programming with Haskell

Haskell as a Calculator

Start the interpreter:

lucht:cmpsem jve$ ghci

GHCi, version 6.12.3: http://www.haskell.org/ghc/ :? for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

Loading package ffi-1.0 ... linking ... done.

Prelude>

GHCi can be used to interactively evaluate expressions.

Prelude> 2 + 3

Prelude> 2 + 3 * 4

Prelude> 2^10

Prelude> (42 - 10) / 2

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 27 / 82

Functional programming with Haskell

Haskell as a Calculator

Start the interpreter:

lucht:cmpsem jve$ ghci

GHCi, version 6.12.3: http://www.haskell.org/ghc/ :? for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

Loading package ffi-1.0 ... linking ... done.

Prelude>

GHCi can be used to interactively evaluate expressions.

Prelude> 2 + 3

Prelude> 2 + 3 * 4

Prelude> 2^10

Prelude> (42 - 10) / 2

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 27 / 82

Functional programming with Haskell

Haskell as a Calculator

Start the interpreter:

lucht:cmpsem jve$ ghci

GHCi, version 6.12.3: http://www.haskell.org/ghc/ :? for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

Loading package ffi-1.0 ... linking ... done.

Prelude>

GHCi can be used to interactively evaluate expressions.

Prelude> 2 + 3

Prelude> 2 + 3 * 4

Prelude> 2^10

Prelude> (42 - 10) / 2

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 27 / 82

Functional programming with Haskell

Your first Haskell program

1 Write the following code to a text file and save it as first.hs:

double :: Int -> Int

double n = 2 * n

2 Inside GHCi, you can load the program with :l first.hs

(or by running ghci first.hs).
With :r you can reload it if you change something.

3 Now you can evaluate expressions like double 5,
double (2+3), and double (double 5).

4 With :t you can ask GHCi about the type of an expression.

5 Leave the interactive environment with :q.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 28 / 82

Functional programming with Haskell

Your first Haskell program

1 Write the following code to a text file and save it as first.hs:

double :: Int -> Int

double n = 2 * n

2 Inside GHCi, you can load the program with :l first.hs

(or by running ghci first.hs).
With :r you can reload it if you change something.

3 Now you can evaluate expressions like double 5,
double (2+3), and double (double 5).

4 With :t you can ask GHCi about the type of an expression.

5 Leave the interactive environment with :q.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 28 / 82

Functional programming with Haskell

Your first Haskell program

1 Write the following code to a text file and save it as first.hs:

double :: Int -> Int

double n = 2 * n

2 Inside GHCi, you can load the program with :l first.hs

(or by running ghci first.hs).
With :r you can reload it if you change something.

3 Now you can evaluate expressions like double 5,
double (2+3), and double (double 5).

4 With :t you can ask GHCi about the type of an expression.

5 Leave the interactive environment with :q.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 28 / 82

Functional programming with Haskell

Your first Haskell program

1 Write the following code to a text file and save it as first.hs:

double :: Int -> Int

double n = 2 * n

2 Inside GHCi, you can load the program with :l first.hs

(or by running ghci first.hs).
With :r you can reload it if you change something.

3 Now you can evaluate expressions like double 5,
double (2+3), and double (double 5).

4 With :t you can ask GHCi about the type of an expression.

5 Leave the interactive environment with :q.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 28 / 82

Functional programming with Haskell

Your first Haskell program

1 Write the following code to a text file and save it as first.hs:

double :: Int -> Int

double n = 2 * n

2 Inside GHCi, you can load the program with :l first.hs

(or by running ghci first.hs).
With :r you can reload it if you change something.

3 Now you can evaluate expressions like double 5,
double (2+3), and double (double 5).

4 With :t you can ask GHCi about the type of an expression.

5 Leave the interactive environment with :q.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 28 / 82

First Experiments

I In a module:

double :: Int -> Int

double n = 2 * n

I In the interpreter:

Prelude> let double n = 2 * n

Prelude> double 5

10

I Combining the two statements:

Prelude> let double n = 2 * n in double 5

10

First Experiments

I In a module:

double :: Int -> Int

double n = 2 * n

I In the interpreter:

Prelude> let double n = 2 * n

Prelude> double 5

10

I Combining the two statements:

Prelude> let double n = 2 * n in double 5

10

First Experiments

I In a module:

double :: Int -> Int

double n = 2 * n

I In the interpreter:

Prelude> let double n = 2 * n

Prelude> double 5

10

I Combining the two statements:

Prelude> let double n = 2 * n in double 5

10

First Experiments

I Type declarations work in the interpreter too:

Prelude> let double :: Int -> Int; double n = 2 * n

Prelude> double 5

10

First Experiments

I “In Haskell it is not strictly necessary to always give explicit
type declarations.
I For instance, the definition of square would also work without

the type declaration, since the system can infer the type from
the definition.

I However, it is good programming practice to give explicit type
declarations even when this is not strictly necessary.
I These type declarations are an aid to understanding, and they

greatly improve the digestibility of functional programs for
human readers.

I Moreover, by writing down the intended type of a function you
constrain what you can implement, for you rule out all
definitions that take arguments or yield values that do not
agree with the type declaration.

I If you try to write a definition with such a type conflict, the
interpreter will immediately reject it.”

Functional programming with Haskell

Lambda Abstraction in Haskell

In Haskell, \ x expresses lambda abstraction over variable x.

sqr :: Int -> Int

sqr = \ x -> x * x

• The intention is that variabele x stands proxy for a number of type
Int.

• The result, the squared number, also has type Int.

• The function sqr is a function that, when combined with an
argument of type Int, yields a value of type Int.

• This is precisely what the type-indication Int -> Int expresses.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 32 / 82

Functional programming with Haskell

Lambda Abstraction in Haskell

In Haskell, \ x expresses lambda abstraction over variable x.

sqr :: Int -> Int

sqr = \ x -> x * x

• The intention is that variabele x stands proxy for a number of type
Int.

• The result, the squared number, also has type Int.

• The function sqr is a function that, when combined with an
argument of type Int, yields a value of type Int.

• This is precisely what the type-indication Int -> Int expresses.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 32 / 82

Functional programming with Haskell

Lambda Abstraction in Haskell

In Haskell, \ x expresses lambda abstraction over variable x.

sqr :: Int -> Int

sqr = \ x -> x * x

• The intention is that variabele x stands proxy for a number of type
Int.

• The result, the squared number, also has type Int.

• The function sqr is a function that, when combined with an
argument of type Int, yields a value of type Int.

• This is precisely what the type-indication Int -> Int expresses.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 32 / 82

Functional programming with Haskell

Lambda Abstraction in Haskell

In Haskell, \ x expresses lambda abstraction over variable x.

sqr :: Int -> Int

sqr = \ x -> x * x

• The intention is that variabele x stands proxy for a number of type
Int.

• The result, the squared number, also has type Int.

• The function sqr is a function that, when combined with an
argument of type Int, yields a value of type Int.

• This is precisely what the type-indication Int -> Int expresses.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 32 / 82

Functional programming with Haskell

Lambda Abstraction in Haskell

In Haskell, \ x expresses lambda abstraction over variable x.

sqr :: Int -> Int

sqr = \ x -> x * x

• The intention is that variabele x stands proxy for a number of type
Int.

• The result, the squared number, also has type Int.

• The function sqr is a function that, when combined with an
argument of type Int, yields a value of type Int.

• This is precisely what the type-indication Int -> Int expresses.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 32 / 82

Functional programming with Haskell

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are
unbounded.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.

To denote arbitrary types, Haskell allows the use of type variables. For
these, a, b, . . . , are used.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 40 / 82

Functional programming with Haskell

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are
unbounded.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.

To denote arbitrary types, Haskell allows the use of type variables. For
these, a, b, . . . , are used.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 40 / 82

Functional programming with Haskell

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are
unbounded.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.

To denote arbitrary types, Haskell allows the use of type variables. For
these, a, b, . . . , are used.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 40 / 82

Functional programming with Haskell

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are
unbounded.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.

To denote arbitrary types, Haskell allows the use of type variables. For
these, a, b, . . . , are used.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 40 / 82

Functional programming with Haskell

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are
unbounded.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.

To denote arbitrary types, Haskell allows the use of type variables. For
these, a, b, . . . , are used.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 40 / 82

Functional programming with Haskell

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are
unbounded.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.

To denote arbitrary types, Haskell allows the use of type variables. For
these, a, b, . . . , are used.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 40 / 82

Functional programming with Haskell

Haskell Derived Types

• By list-formation: if a is a type, [a] is the type of lists over a.
Examples: [Int] is the type of lists of integers; [Char] is the type of
lists of characters, or strings.

• By pair- or tuple-formation: if a and b are types, then (a,b) is the
type of pairs with an object of type a as their first component, and an
object of type b as their second component. If a, b and c are types,
then (a,b,c) is the type of triples with an object of type a as their
first component, an object of type b as their second component, and
an object of type c as their third component . . .

• By function definition: a -> b is the type of a function that takes
arguments of type a and returns values of type b.

• By defining your own datatype from scratch, with a data type
declaration. More about this in due course.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 41 / 82

Functional programming with Haskell

Haskell Derived Types

• By list-formation: if a is a type, [a] is the type of lists over a.
Examples: [Int] is the type of lists of integers; [Char] is the type of
lists of characters, or strings.

• By pair- or tuple-formation: if a and b are types, then (a,b) is the
type of pairs with an object of type a as their first component, and an
object of type b as their second component. If a, b and c are types,
then (a,b,c) is the type of triples with an object of type a as their
first component, an object of type b as their second component, and
an object of type c as their third component . . .

• By function definition: a -> b is the type of a function that takes
arguments of type a and returns values of type b.

• By defining your own datatype from scratch, with a data type
declaration. More about this in due course.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 41 / 82

Functional programming with Haskell

Haskell Derived Types

• By list-formation: if a is a type, [a] is the type of lists over a.
Examples: [Int] is the type of lists of integers; [Char] is the type of
lists of characters, or strings.

• By pair- or tuple-formation: if a and b are types, then (a,b) is the
type of pairs with an object of type a as their first component, and an
object of type b as their second component. If a, b and c are types,
then (a,b,c) is the type of triples with an object of type a as their
first component, an object of type b as their second component, and
an object of type c as their third component . . .

• By function definition: a -> b is the type of a function that takes
arguments of type a and returns values of type b.

• By defining your own datatype from scratch, with a data type
declaration. More about this in due course.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 41 / 82

Functional programming with Haskell

Haskell Derived Types

• By list-formation: if a is a type, [a] is the type of lists over a.
Examples: [Int] is the type of lists of integers; [Char] is the type of
lists of characters, or strings.

• By pair- or tuple-formation: if a and b are types, then (a,b) is the
type of pairs with an object of type a as their first component, and an
object of type b as their second component. If a, b and c are types,
then (a,b,c) is the type of triples with an object of type a as their
first component, an object of type b as their second component, and
an object of type c as their third component . . .

• By function definition: a -> b is the type of a function that takes
arguments of type a and returns values of type b.

• By defining your own datatype from scratch, with a data type
declaration. More about this in due course.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 41 / 82

Question for Discussion

I Formal semantics is about building models of the (or a) world,
and evaluating the truth of sentences in those models

I What kinds of things do we want to represent in our models?
I What are the corresponding kinds of linguistic expressions?

I Try to assign each “kind of thing” a type
I Which types should be basic types, and which types can be

derived (functional) types?

I If you have taken formal semantics before, you may remember
“the answer”
I That being said, try to keep an open mind. For example, what

happens if you choose a different set of basic types?

Question for Discussion

I Formal semantics is about building models of the (or a) world,
and evaluating the truth of sentences in those models

I What kinds of things do we want to represent in our models?
I What are the corresponding kinds of linguistic expressions?

I Try to assign each “kind of thing” a type
I Which types should be basic types, and which types can be

derived (functional) types?

I If you have taken formal semantics before, you may remember
“the answer”
I That being said, try to keep an open mind. For example, what

happens if you choose a different set of basic types?

Question for Discussion

I Formal semantics is about building models of the (or a) world,
and evaluating the truth of sentences in those models

I What kinds of things do we want to represent in our models?
I What are the corresponding kinds of linguistic expressions?

I Try to assign each “kind of thing” a type
I Which types should be basic types, and which types can be

derived (functional) types?

I If you have taken formal semantics before, you may remember
“the answer”
I That being said, try to keep an open mind. For example, what

happens if you choose a different set of basic types?

Question for Discussion

I Formal semantics is about building models of the (or a) world,
and evaluating the truth of sentences in those models

I What kinds of things do we want to represent in our models?
I What are the corresponding kinds of linguistic expressions?

I Try to assign each “kind of thing” a type
I Which types should be basic types, and which types can be

derived (functional) types?

I If you have taken formal semantics before, you may remember
“the answer”
I That being said, try to keep an open mind. For example, what

happens if you choose a different set of basic types?

