Functional Programming with Haskell, Part 2

Kenneth Lai

Brandeis University

September 19, 2022

Announcements

» Student hours this week
» Tue 9/20 5-6pm, Ken, remote only
> Wed 9/21 11am-noon, Bingyang, hybrid
» Thu 9/22 4-5pm, Ken, remote only
» Fri 9/23 2:15-3:15pm, Bingyang, hybrid
» For Wednesday:

» Review van Eijck and Unger Chapter 4.4, 5.2, and 5.3
» Read van Eijck and Unger Chapter 4.5, 4.6, and 5.5

» For 9/28:
> HWI1 due

Today's Plan

» Functional Programming with Haskell

Prefix and Infix Operators

» Most Haskell operators (functions) are prefix operators
» Write the function first, followed by its arguments

Prefix and Infix Operators

» Most Haskell operators (functions) are prefix operators
» Write the function first, followed by its arguments
» Some binary operators are infix operators

» Write the function between its arguments
> 1 + 1instead of + 1 1

Prefix and Infix Operators

» Most Haskell operators (functions) are prefix operators
» Write the function first, followed by its arguments
» Some binary operators are infix operators

» Write the function between its arguments
> 1 + 1instead of + 1 1

» Parentheses change an infix operator into a prefix operator
> 1+ 1or(+) 11

Prefix and Infix Operators

» Most Haskell operators (functions) are prefix operators
» Write the function first, followed by its arguments
» Some binary operators are infix operators

» Write the function between its arguments
> 1 + 1instead of + 1 1

» Parentheses change an infix operator into a prefix operator
> 1+ 1or(+) 11

» Backticks change a prefix operator into an infix operator
» elem 1 [1,2] or1 ‘elem‘ [1,2]

Currying

» Currying is the conversion of a function of multiple arguments
into a sequence of functions of one argument

Currying

» Currying is the conversion of a function of multiple arguments
into a sequence of functions of one argument
> elem 1 [1,2]: elem takes an element and a list (or list-like
object), and outputs whether the element is in the list

Currying

» Currying is the conversion of a function of multiple arguments
into a sequence of functions of one argument
> elem 1 [1,2]: elem takes an element and a list (or list-like
object), and outputs whether the element is in the list
> elem 1 [1,2]: elem takes an element (1), and outputs a
function (elem 1) that takes a list (or list-like object), and
outputs whether 1 is in the list

Currying

» Currying is the conversion of a function of multiple arguments
into a sequence of functions of one argument

> elem 1 [1,2]: elem takes an element and a list (or list-like
object), and outputs whether the element is in the list

> elem 1 [1,2]: elem takes an element (1), and outputs a
function (elem 1) that takes a list (or list-like object), and
outputs whether 1 is in the list

» These two descriptions are equivalent

Functional programming with Haskell

String Functions in Haskell

Prelude> (\ x -> x ++ " emeritus") "professor"
"professor emeritus"

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 33/-82

Functional programming with Haskell

String Functions in Haskell

Prelude> (\ x -> x ++ " emeritus") "professor"
"professor emeritus"

This combines lambda abstraction and concatenation.

Jan van Eijck & Christina Unger Computational Semantics

ESSLEl 2011 33/c82

Functional programming with Haskell

String Functions in Haskell

Prelude> (\ x -> x ++ " emeritus") "professor"
"professor emeritus"

This combines lambda abstraction and concatenation.

The types:

Prelude> :t (\ x -> x ++ " emeritus")

\x -> x ++ " emeritus" :: [Char] -> [Char]
Prelude> :t "professor"

"professor" :: String

Prelude> :t (\ x -> x ++ " emeritus") "professor"
(\x -> x ++ " emeritus") "professor" :: [Char]

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 33/c82

Concatenation

The type of the concatenation function:

Prelude> :t (++)
(++) :: [a]l -> [a] -> [a]

(or (++) :: forall a. [a]l -> [a] -> [al?)

Concatenation

The type of the concatenation function:

Prelude> :t (++)
(++) :: [a]l -> [a] -> [a]

(or (++) :: forall a. [a]l -> [a] -> [al?)

The type (with type variable(s)) indicates that (++) not only
concatenates strings. It works for lists in general

P This is called type polymorphism

Functional programming with Haskell

More String Functions in Haskell

Prelude> (\ x -> "nice " ++ x) "guy"

"nice guy"

Prelude> (\ f -> \ x -> "very " ++ (f x))
(\ x -> "nice " ++ x) "guy"

"very nice guy"

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011

Functional programming with Haskell

More String Functions in Haskell

Prelude> (\ x -> "nice " ++ x) "guy"

"nice guy"

Prelude> (\ f -> \ x -> "very " ++ (f x))
(\ x => "nice " ++ x) "guy"

"very nice guy"

The types:

Prelude> :t "guy"
"guy" :: [Char]
Prelude> :t (\ x -> "nice " ++ x)
(\ x -> "nice " ++ x) :: [Char] -> [Char]
Prelude> :t (\ £ -> \ x -> "very " ++ (f x))
(N f >\ x> "very " ++ (f x))

:: forall t. (t -> [Char]) -> t -> [Char]

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011

3582

Functional programming with Haskell

Characters and Strings

The Haskell type of characters is Char. Strings of characters have
type [Char].

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 36 /82

Functional programming with Haskell

Characters and Strings

The Haskell type of characters is Char. Strings of characters have
type [Char].

Similarly, lists of integers have type [Int].

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 36 /82

Functional programming with Haskell

Characters and Strings

The Haskell type of characters is Char. Strings of characters have
type [Char].

Similarly, lists of integers have type [Int].
The empty string (or the empty list) is [].

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 36 /82

Functional programming with Haskell

Characters and Strings

The Haskell type of characters is Char. Strings of characters have
type [Char].

Similarly, lists of integers have type [Int].
The empty string (or the empty list) is [].
The type [Char] is abbreviated as String.

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 36 /82

Functional programming with Haskell

Characters and Strings

The Haskell type of characters is Char. Strings of characters have
type [Char].

Similarly, lists of integers have type [Int].
The empty string (or the empty list) is [].
The type [Char] is abbreviated as String.

Examples of characters are ’a’, *b’ (note the single quotes).

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 36 /82

Functional programming with Haskell

Characters and Strings

The Haskell type of characters is Char. Strings of characters have
type [Char].

Similarly, lists of integers have type [Int].
The empty string (or the empty list) is [].
The type [Char] is abbreviated as String.
Examples of characters are ’a’, *b’ (note the single quotes).

Examples of strings are "Montague" and "Chomsky" (note the
double quotes).

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 36 /82

Functional programming with Haskell

Characters and Strings

The Haskell type of characters is Char. Strings of characters have
type [Char].

Similarly, lists of integers have type [Int].
The empty string (or the empty list) is [].
The type [Char] is abbreviated as String.
Examples of characters are ’a’, *b’ (note the single quotes).

Examples of strings are "Montague" and "Chomsky" (note the
double quotes).

In fact, "Chomsky" can be seen as an abbreviation of the following
character list:
[)C) s ’h’,’O’ s ’m’,’s’ s ’k),’y’]-

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 36/c82

Booleans

> “The type Bool of Booleans (so-called after George Boole)
consists of the two truth-values True and False.”

Booleans

> “The type Bool of Booleans (so-called after George Boole)
consists of the two truth-values True and False.”
P Logical operators in Haskell
» Conjunction is &&
» Disjunction is | |
» Negation is not

Booleans

> “The type Bool of Booleans (so-called after George Boole)
consists of the two truth-values True and False.”
P Logical operators in Haskell
» Conjunction is &&
» Disjunction is | |
» Negation is not

> Types
» (&%) :: Bool -> Bool -> Bool
» (|]) :: Bool -> Bool -> Bool

» not :: Bool -> Bool

Functional programming with Haskell

Properties of Strings

If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 37/c82

Functional programming with Haskell

Properties of Strings

If strings have type [Char] (or String), properties of strings have

type [Char] -> Bool.

Here is a simple property:

aword :: [Char] -> Bool
aword [] = False
aword (x:xs) = (x == ’a’) || (aword xs)

Jan van Eijck & Christina Unger

Computational Semantics

ESSLEl 2011

37 /82

Functional programming with Haskell

Properties of Strings

If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

Here is a simple property:

aword :: [Char] -> Bool
aword [] = False
aword (x:xs) = (x == ’a’) || (aword xs)

This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 37/c82

Functional programming with Haskell

Properties of Strings

If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

Here is a simple property:

aword :: [Char] -> Bool
aword [] = False
aword (x:xs) = (x == ’a’) || (aword xs)

This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.
The head of (x:xs) is x, the tail is xs.

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 37/c82

Functional programming with Haskell

Properties of Strings

If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

Here is a simple property:

aword :: [Char] -> Bool
aword [] = False
aword (x:xs) = (x == ’a’) || (aword xs)

This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

The head of (x:xs) is x, the tail is xs.

The head and tail are glued together by means of the operation :, of
type a => [a] -> [a].

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 37/c82

Functional programming with Haskell

Properties of Strings

If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

Here is a simple property:

aword :: [Char] -> Bool
aword [] = False
aword (x:xs) = (x == ’a’) || (aword xs)

This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

The head of (x:xs) is x, the tail is xs.

The head and tail are glued together by means of the operation :, of
type a => [a] -> [a].

The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 37/c82

Functional programming with Haskell

List Patterns

It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x's and that xs is a list.

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 38 /82

Functional programming with Haskell

List Patterns

It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x's and that xs is a list.

Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 38 /82

Functional programming with Haskell

List Patterns

It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x's and that xs is a list.

Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 38 /82

Functional programming with Haskell

List Patterns

It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x's and that xs is a list.

Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

The list pattern [1 matches only the empty list,

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 38 /82

Functional programming with Haskell

List Patterns

It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x's and that xs is a list.

Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

The list pattern [1 matches only the empty list,

the list pattern [x] matches any singleton list,

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 38 /82

Functional programming with Haskell

List Patterns

It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x's and that xs is a list.

Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

The list pattern [1 matches only the empty list,
the list pattern [x] matches any singleton list,

the list pattern (x:xs) matches any non-empty list.

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 38 /82

Recursion

» Recursive definitions always have a base case, a case that can
be computed without calling the function

Recursion

» Recursive definitions always have a base case, a case that can
be computed without calling the function

> Exercise 3.6 Why is the definition of ‘GNU" as ‘GNU’s Not
Unix’ not a recursive definition?

Functional programming with Haskell

Sentences can go on

Sentences can go on and on and on and on and on and on and on

gen :: Int -> String
gen 0 = "Sentences can go on"
gen n = gen (n-1) ++ " and on"
genS :: Int -> String
genS n = gen n ++ "."

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 30/c82

Recursion

> But a base case is not always enough...

story :: Int -> String
story 0 =
"Let’s cook and eat that final missionary, and off to bed."
story k =
"The night was pitch dark, mysterious and deep.\n"
++ "Ten cannibals were seated around a boiling cauldron.\n"
++ "Their leader got up and addressed them like this:\n’"

++ story (k-1) ++ "’"

Recursion

> But a base case is not always enough...
story :: Int -> String
story 0 =
"Let’s cook and eat that final missionary, and off to bed."
story k =
"The night was pitch dark, mysterious and deep.\n"
++ "Ten cannibals were seated around a boiling cauldron.\n"
++ "Their leader got up and addressed them like this:\n’"
++ story (k-1) ++ "’"

» Exercise 3.5 What happens if you ask for
putStrLn (story (-1))? Why?

Functional programming with Haskell

List Reversal

CHOMSKY
EUGATNOM

Jan van Eijck & Christina Unger Computational Semantics

ESSLEl 2011

39/:82

Functional programming with Haskell

List Reversal

CHOMSKY YKSMOHC
EUGATNOM

Jan van Eijck & Christina Unger Computational Semantics

ESSLEl 2011

39/:82

Functional programming with Haskell

List Reversal

CHOMSKY YKSMOHC
EUGATNOM MONTAGUE

Jan van Eijck & Christina Unger Computational Semantics

ESSLEl 2011

39/:82

Functional programming with Haskell

List Reversal

CHOMSKY YKSMOHC
EUGATNOM MONTAGUE

reversal :: [a]l -> [a]
reversal [] (]
reversal (x:t) reversal t ++ [x]

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 39 /82

Functional programming with Haskell

List Reversal

CHOMSKY YKSMOHC
EUGATNOM MONTAGUE

reversal :: [a]l -> [a]
reversal [] = []
reversal (x:t) = reversal t ++ [x]

Reversal works for any list, not just for strings.

Jan van Eijck & Christina Unger Computational Semantics

ESSLEl 2011

39/:82

