
Functional Programming with Haskell, Part 2

Kenneth Lai

Brandeis University

September 19, 2022

Announcements

I Student hours this week
I Tue 9/20 5-6pm, Ken, remote only
I Wed 9/21 11am-noon, Bingyang, hybrid
I Thu 9/22 4-5pm, Ken, remote only
I Fri 9/23 2:15-3:15pm, Bingyang, hybrid

I For Wednesday:
I Review van Eijck and Unger Chapter 4.4, 5.2, and 5.3
I Read van Eijck and Unger Chapter 4.5, 4.6, and 5.5

I For 9/28:
I HW1 due

Today’s Plan

I Functional Programming with Haskell

Prefix and Infix Operators

I Most Haskell operators (functions) are prefix operators
I Write the function first, followed by its arguments

I Some binary operators are infix operators
I Write the function between its arguments
I 1 + 1 instead of + 1 1

I Parentheses change an infix operator into a prefix operator
I 1 + 1 or (+) 1 1

I Backticks change a prefix operator into an infix operator
I elem 1 [1,2] or 1 ‘elem‘ [1,2]

Prefix and Infix Operators

I Most Haskell operators (functions) are prefix operators
I Write the function first, followed by its arguments

I Some binary operators are infix operators
I Write the function between its arguments
I 1 + 1 instead of + 1 1

I Parentheses change an infix operator into a prefix operator
I 1 + 1 or (+) 1 1

I Backticks change a prefix operator into an infix operator
I elem 1 [1,2] or 1 ‘elem‘ [1,2]

Prefix and Infix Operators

I Most Haskell operators (functions) are prefix operators
I Write the function first, followed by its arguments

I Some binary operators are infix operators
I Write the function between its arguments
I 1 + 1 instead of + 1 1

I Parentheses change an infix operator into a prefix operator
I 1 + 1 or (+) 1 1

I Backticks change a prefix operator into an infix operator
I elem 1 [1,2] or 1 ‘elem‘ [1,2]

Prefix and Infix Operators

I Most Haskell operators (functions) are prefix operators
I Write the function first, followed by its arguments

I Some binary operators are infix operators
I Write the function between its arguments
I 1 + 1 instead of + 1 1

I Parentheses change an infix operator into a prefix operator
I 1 + 1 or (+) 1 1

I Backticks change a prefix operator into an infix operator
I elem 1 [1,2] or 1 ‘elem‘ [1,2]

Currying

I Currying is the conversion of a function of multiple arguments
into a sequence of functions of one argument

I elem 1 [1,2]: elem takes an element and a list (or list-like
object), and outputs whether the element is in the list

I elem 1 [1,2]: elem takes an element (1), and outputs a
function (elem 1) that takes a list (or list-like object), and
outputs whether 1 is in the list

I These two descriptions are equivalent

Currying

I Currying is the conversion of a function of multiple arguments
into a sequence of functions of one argument
I elem 1 [1,2]: elem takes an element and a list (or list-like

object), and outputs whether the element is in the list

I elem 1 [1,2]: elem takes an element (1), and outputs a
function (elem 1) that takes a list (or list-like object), and
outputs whether 1 is in the list

I These two descriptions are equivalent

Currying

I Currying is the conversion of a function of multiple arguments
into a sequence of functions of one argument
I elem 1 [1,2]: elem takes an element and a list (or list-like

object), and outputs whether the element is in the list
I elem 1 [1,2]: elem takes an element (1), and outputs a

function (elem 1) that takes a list (or list-like object), and
outputs whether 1 is in the list

I These two descriptions are equivalent

Currying

I Currying is the conversion of a function of multiple arguments
into a sequence of functions of one argument
I elem 1 [1,2]: elem takes an element and a list (or list-like

object), and outputs whether the element is in the list
I elem 1 [1,2]: elem takes an element (1), and outputs a

function (elem 1) that takes a list (or list-like object), and
outputs whether 1 is in the list

I These two descriptions are equivalent

Functional programming with Haskell

String Functions in Haskell

Prelude> (\ x -> x ++ " emeritus") "professor"

"professor emeritus"

This combines lambda abstraction and concatenation.

The types:

Prelude> :t (\ x -> x ++ " emeritus")

\x -> x ++ " emeritus" :: [Char] -> [Char]

Prelude> :t "professor"

"professor" :: String

Prelude> :t (\ x -> x ++ " emeritus") "professor"

(\x -> x ++ " emeritus") "professor" :: [Char]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 33 / 82

Functional programming with Haskell

String Functions in Haskell

Prelude> (\ x -> x ++ " emeritus") "professor"

"professor emeritus"

This combines lambda abstraction and concatenation.

The types:

Prelude> :t (\ x -> x ++ " emeritus")

\x -> x ++ " emeritus" :: [Char] -> [Char]

Prelude> :t "professor"

"professor" :: String

Prelude> :t (\ x -> x ++ " emeritus") "professor"

(\x -> x ++ " emeritus") "professor" :: [Char]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 33 / 82

Functional programming with Haskell

String Functions in Haskell

Prelude> (\ x -> x ++ " emeritus") "professor"

"professor emeritus"

This combines lambda abstraction and concatenation.

The types:

Prelude> :t (\ x -> x ++ " emeritus")

\x -> x ++ " emeritus" :: [Char] -> [Char]

Prelude> :t "professor"

"professor" :: String

Prelude> :t (\ x -> x ++ " emeritus") "professor"

(\x -> x ++ " emeritus") "professor" :: [Char]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 33 / 82

Concatenation

The type of the concatenation function:

Prelude> :t (++)

(++) :: [a] -> [a] -> [a]

(or (++) :: forall a. [a] -> [a] -> [a]?)

The type (with type variable(s)) indicates that (++) not only
concatenates strings. It works for lists in general

I This is called type polymorphism

Concatenation

The type of the concatenation function:

Prelude> :t (++)

(++) :: [a] -> [a] -> [a]

(or (++) :: forall a. [a] -> [a] -> [a]?)

The type (with type variable(s)) indicates that (++) not only
concatenates strings. It works for lists in general

I This is called type polymorphism

Functional programming with Haskell

More String Functions in Haskell

Prelude> (\ x -> "nice " ++ x) "guy"

"nice guy"

Prelude> (\ f -> \ x -> "very " ++ (f x))

(\ x -> "nice " ++ x) "guy"

"very nice guy"

The types:

Prelude> :t "guy"

"guy" :: [Char]

Prelude> :t (\ x -> "nice " ++ x)

(\ x -> "nice " ++ x) :: [Char] -> [Char]

Prelude> :t (\ f -> \ x -> "very " ++ (f x))

(\ f -> \ x -> "very " ++ (f x))

:: forall t. (t -> [Char]) -> t -> [Char]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 35 / 82

Functional programming with Haskell

More String Functions in Haskell

Prelude> (\ x -> "nice " ++ x) "guy"

"nice guy"

Prelude> (\ f -> \ x -> "very " ++ (f x))

(\ x -> "nice " ++ x) "guy"

"very nice guy"

The types:

Prelude> :t "guy"

"guy" :: [Char]

Prelude> :t (\ x -> "nice " ++ x)

(\ x -> "nice " ++ x) :: [Char] -> [Char]

Prelude> :t (\ f -> \ x -> "very " ++ (f x))

(\ f -> \ x -> "very " ++ (f x))

:: forall t. (t -> [Char]) -> t -> [Char]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 35 / 82

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Montague" and "Chomsky" (note the
double quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 36 / 82

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Montague" and "Chomsky" (note the
double quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 36 / 82

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Montague" and "Chomsky" (note the
double quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 36 / 82

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Montague" and "Chomsky" (note the
double quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 36 / 82

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Montague" and "Chomsky" (note the
double quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 36 / 82

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Montague" and "Chomsky" (note the
double quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 36 / 82

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Montague" and "Chomsky" (note the
double quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 36 / 82

Booleans

I “The type Bool of Booleans (so-called after George Boole)
consists of the two truth-values True and False.”

I Logical operators in Haskell
I Conjunction is &&
I Disjunction is ||
I Negation is not

I Types
I (&&) :: Bool -> Bool -> Bool
I (||) :: Bool -> Bool -> Bool
I not :: Bool -> Bool

Booleans

I “The type Bool of Booleans (so-called after George Boole)
consists of the two truth-values True and False.”

I Logical operators in Haskell
I Conjunction is &&
I Disjunction is ||
I Negation is not

I Types
I (&&) :: Bool -> Bool -> Bool
I (||) :: Bool -> Bool -> Bool
I not :: Bool -> Bool

Booleans

I “The type Bool of Booleans (so-called after George Boole)
consists of the two truth-values True and False.”

I Logical operators in Haskell
I Conjunction is &&
I Disjunction is ||
I Negation is not

I Types
I (&&) :: Bool -> Bool -> Bool
I (||) :: Bool -> Bool -> Bool
I not :: Bool -> Bool

Functional programming with Haskell

Properties of Strings

• If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of
type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 37 / 82

Functional programming with Haskell

Properties of Strings

• If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of
type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 37 / 82

Functional programming with Haskell

Properties of Strings

• If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of
type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 37 / 82

Functional programming with Haskell

Properties of Strings

• If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of
type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 37 / 82

Functional programming with Haskell

Properties of Strings

• If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of
type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 37 / 82

Functional programming with Haskell

Properties of Strings

• If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of
type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 37 / 82

Functional programming with Haskell

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

• What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 38 / 82

Functional programming with Haskell

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

• What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 38 / 82

Functional programming with Haskell

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

• What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 38 / 82

Functional programming with Haskell

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

• What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 38 / 82

Functional programming with Haskell

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

• What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 38 / 82

Functional programming with Haskell

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

• What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 38 / 82

Recursion

I Recursive definitions always have a base case, a case that can
be computed without calling the function

I Exercise 3.6 Why is the definition of ‘GNU’ as ‘GNU’s Not
Unix’ not a recursive definition?

Recursion

I Recursive definitions always have a base case, a case that can
be computed without calling the function

I Exercise 3.6 Why is the definition of ‘GNU’ as ‘GNU’s Not
Unix’ not a recursive definition?

Functional programming with Haskell

Sentences can go on . . .

Sentences can go on and on and on and on and on and on and on

gen :: Int -> String

gen 0 = "Sentences can go on"

gen n = gen (n-1) ++ " and on"

genS :: Int -> String

genS n = gen n ++ "."

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 30 / 82

Recursion

I But a base case is not always enough...
story :: Int -> String

story 0 =

"Let’s cook and eat that final missionary, and off to bed."

story k =

"The night was pitch dark, mysterious and deep.\n"

++ "Ten cannibals were seated around a boiling cauldron.\n"

++ "Their leader got up and addressed them like this:\n’"

++ story (k-1) ++ "’"

I Exercise 3.5 What happens if you ask for
putStrLn (story (-1))? Why?

Recursion

I But a base case is not always enough...
story :: Int -> String

story 0 =

"Let’s cook and eat that final missionary, and off to bed."

story k =

"The night was pitch dark, mysterious and deep.\n"

++ "Ten cannibals were seated around a boiling cauldron.\n"

++ "Their leader got up and addressed them like this:\n’"

++ story (k-1) ++ "’"

I Exercise 3.5 What happens if you ask for
putStrLn (story (-1))? Why?

Functional programming with Haskell

List Reversal

CHOMSKY

YKSMOHC

EUGATNOM

MONTAGUE

reversal :: [a] -> [a]

reversal [] = []

reversal (x:t) = reversal t ++ [x]

Reversal works for any list, not just for strings.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 39 / 82

Functional programming with Haskell

List Reversal

CHOMSKY YKSMOHC

EUGATNOM

MONTAGUE

reversal :: [a] -> [a]

reversal [] = []

reversal (x:t) = reversal t ++ [x]

Reversal works for any list, not just for strings.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 39 / 82

Functional programming with Haskell

List Reversal

CHOMSKY YKSMOHC

EUGATNOM MONTAGUE

reversal :: [a] -> [a]

reversal [] = []

reversal (x:t) = reversal t ++ [x]

Reversal works for any list, not just for strings.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 39 / 82

Functional programming with Haskell

List Reversal

CHOMSKY YKSMOHC

EUGATNOM MONTAGUE

reversal :: [a] -> [a]

reversal [] = []

reversal (x:t) = reversal t ++ [x]

Reversal works for any list, not just for strings.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 39 / 82

Functional programming with Haskell

List Reversal

CHOMSKY YKSMOHC

EUGATNOM MONTAGUE

reversal :: [a] -> [a]

reversal [] = []

reversal (x:t) = reversal t ++ [x]

Reversal works for any list, not just for strings.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 39 / 82

