
Functional Programming with Haskell, Part 3

Kenneth Lai

Brandeis University

September 21, 2022

Announcements

I Student hours this week
I Thu 9/22 4-5pm, Ken, remote only
I Fri 9/23 2:15-3:15pm, Bingyang, hybrid

I Final project presentations 12/14 6-9pm
I Save the date!

I For next Wednesday:
I HW1 due

Today’s Plan

I Functional Programming with Haskell

Ranges

I “Lists can also be given by not enumerating all their elements
but by indicating the range of elements: [n..m] is the list
bounded below by n and above by m.”

I Works for objects that can be enumerated (i.e., converted to
and from Int)

I Integers
I Characters
I etc.

I [1..423] is the list of all numbers from 1 to 423
I [’g’..’s’] is the list of all characters from g to s

Ranges

I “Lists can also be given by not enumerating all their elements
but by indicating the range of elements: [n..m] is the list
bounded below by n and above by m.”
I Works for objects that can be enumerated (i.e., converted to

and from Int)
I Integers
I Characters
I etc.

I [1..423] is the list of all numbers from 1 to 423
I [’g’..’s’] is the list of all characters from g to s

Ranges

I “Lists can also be given by not enumerating all their elements
but by indicating the range of elements: [n..m] is the list
bounded below by n and above by m.”
I Works for objects that can be enumerated (i.e., converted to

and from Int)
I Integers
I Characters
I etc.

I [1..423] is the list of all numbers from 1 to 423
I [’g’..’s’] is the list of all characters from g to s

Infinite Lists

I [0..] denotes the list of all natural numbers

I “Since Haskell does not evaluate an argument unless it needs
it, it can handle infinite lists as long as it has to compute only
a finite amount of its elements.”
I [0..] does not terminate, but take 5 [0..] does

Infinite Lists

I [0..] denotes the list of all natural numbers
I “Since Haskell does not evaluate an argument unless it needs

it, it can handle infinite lists as long as it has to compute only
a finite amount of its elements.”
I [0..] does not terminate, but take 5 [0..] does

Functional programming with Haskell

Mapping

If you use the Hugs command :t to find the types of the function map,
you get the following:

Prelude> :t map

map :: forall a b. (a -> b) -> [a] -> [b]

The function map takes a function and a list and returns a list containing
the results of applying the function to the individual list members.

If f is a function of type a -> b and xs is a list of type [a], then
map f xs will return a list of type [b]. E.g., map (^2) [1..9] will
produce the list of squares

[1, 4, 9, 16, 25, 36, 49, 64, 81]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 42 / 82

Functional programming with Haskell

Mapping

If you use the Hugs command :t to find the types of the function map,
you get the following:

Prelude> :t map

map :: forall a b. (a -> b) -> [a] -> [b]

The function map takes a function and a list and returns a list containing
the results of applying the function to the individual list members.

If f is a function of type a -> b and xs is a list of type [a], then
map f xs will return a list of type [b]. E.g., map (^2) [1..9] will
produce the list of squares

[1, 4, 9, 16, 25, 36, 49, 64, 81]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 42 / 82

Functional programming with Haskell

Mapping

If you use the Hugs command :t to find the types of the function map,
you get the following:

Prelude> :t map

map :: forall a b. (a -> b) -> [a] -> [b]

The function map takes a function and a list and returns a list containing
the results of applying the function to the individual list members.

If f is a function of type a -> b and xs is a list of type [a], then
map f xs will return a list of type [b]. E.g., map (^2) [1..9] will
produce the list of squares

[1, 4, 9, 16, 25, 36, 49, 64, 81]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 42 / 82

Functional programming with Haskell

Sections

• In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

• (x op) is the operation resulting from applying op to its lefthand
side argument.

• (op) is the prefix version of the operator.

• Thus (2^) is the operation that computes powers of 2, and
map (2^) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

• Similarly, (>3) denotes the property of being greater than 3, and
(3>) the property of being smaller than 3.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 43 / 82

Functional programming with Haskell

Sections

• In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

• (x op) is the operation resulting from applying op to its lefthand
side argument.

• (op) is the prefix version of the operator.

• Thus (2^) is the operation that computes powers of 2, and
map (2^) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

• Similarly, (>3) denotes the property of being greater than 3, and
(3>) the property of being smaller than 3.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 43 / 82

Functional programming with Haskell

Sections

• In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

• (x op) is the operation resulting from applying op to its lefthand
side argument.

• (op) is the prefix version of the operator.

• Thus (2^) is the operation that computes powers of 2, and
map (2^) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

• Similarly, (>3) denotes the property of being greater than 3, and
(3>) the property of being smaller than 3.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 43 / 82

Functional programming with Haskell

Sections

• In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

• (x op) is the operation resulting from applying op to its lefthand
side argument.

• (op) is the prefix version of the operator.

• Thus (2^) is the operation that computes powers of 2, and
map (2^) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

• Similarly, (>3) denotes the property of being greater than 3, and
(3>) the property of being smaller than 3.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 43 / 82

Functional programming with Haskell

Sections

• In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

• (x op) is the operation resulting from applying op to its lefthand
side argument.

• (op) is the prefix version of the operator.

• Thus (2^) is the operation that computes powers of 2, and
map (2^) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

• Similarly, (>3) denotes the property of being greater than 3, and
(3>) the property of being smaller than 3.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 43 / 82

Functional programming with Haskell

Map

If p is a property (an operation of type a -> Bool) and l is a list of type
[a], then map p l will produce a list of type Bool (a list of truth
values), like this:

Prelude> map (>3) [1..6]

[False, False, False, True, True, True]

Prelude>

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = (f x) : map f xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 44 / 82

Functional programming with Haskell

Map

If p is a property (an operation of type a -> Bool) and l is a list of type
[a], then map p l will produce a list of type Bool (a list of truth
values), like this:

Prelude> map (>3) [1..6]

[False, False, False, True, True, True]

Prelude>

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = (f x) : map f xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 44 / 82

Functional programming with Haskell

Map

If p is a property (an operation of type a -> Bool) and l is a list of type
[a], then map p l will produce a list of type Bool (a list of truth
values), like this:

Prelude> map (>3) [1..6]

[False, False, False, True, True, True]

Prelude>

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = (f x) : map f xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 44 / 82

Functional programming with Haskell

Filter

A function for filtering out the elements from a list that satisfy a given
property.

Prelude> filter (>3) [1..10]

[4,5,6,7,8,9,10]

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 45 / 82

Functional programming with Haskell

Filter

A function for filtering out the elements from a list that satisfy a given
property.

Prelude> filter (>3) [1..10]

[4,5,6,7,8,9,10]

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 45 / 82

Functional programming with Haskell

Filter

A function for filtering out the elements from a list that satisfy a given
property.

Prelude> filter (>3) [1..10]

[4,5,6,7,8,9,10]

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 45 / 82

Functional programming with Haskell

Filter

A function for filtering out the elements from a list that satisfy a given
property.

Prelude> filter (>3) [1..10]

[4,5,6,7,8,9,10]

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 45 / 82

Guarded Equations

foo t | condition_1 = body_1

| condition_2 = body_2

| otherwise = body_3

I If condition 1 is true, then foo t = body 1

I Else if condition 2 is true, then foo t = body 2

I Else, foo t = body 3

Guarded Equations

I Can also be written as:

foo t = if condition_1 then body_1

else if condition_2 then body_2

else body_3

I Guards are more common, though, especially when you have
multiple if conditions

Guarded Equations

I Can also be written as:

foo t = if condition_1 then body_1

else if condition_2 then body_2

else body_3

I Guards are more common, though, especially when you have
multiple if conditions

Functional programming with Haskell

List comprehension

List comprehension is defining lists by the following method:

[x | x <- xs, property x]

This defines the sublist of xs of all items satisfying property. It is
equivalent to:

filter property xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 46 / 82

Functional programming with Haskell

Examples

someEvens = [x | x <- [1..1000] , even x]

evensUntil n = [x | x <- [1..n], even x]

allEvens = [x | x <- [1..] , even x]

Equivalently:

someEvens = filter even [1..1000]

evensUntil n = filter even [1..n]

allEvens = filter even [1..]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 47 / 82

Functional programming with Haskell

Examples

someEvens = [x | x <- [1..1000] , even x]

evensUntil n = [x | x <- [1..n], even x]

allEvens = [x | x <- [1..] , even x]

Equivalently:

someEvens = filter even [1..1000]

evensUntil n = filter even [1..n]

allEvens = filter even [1..]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 47 / 82

Functional programming with Haskell

Function Composition

• The composition of two functions f and g , pronounced ‘f after g ’ is
the function that results from first applying g and next f .

• Standard notation for this: f · g .

• This is pronounced as “f after g”.

• Haskell implementation:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

f . g = \ x -> f (g x)

• Note the types!

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 49 / 82

Functional programming with Haskell

Function Composition

• The composition of two functions f and g , pronounced ‘f after g ’ is
the function that results from first applying g and next f .

• Standard notation for this: f · g .

• This is pronounced as “f after g”.

• Haskell implementation:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

f . g = \ x -> f (g x)

• Note the types!

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 49 / 82

Functional programming with Haskell

Function Composition

• The composition of two functions f and g , pronounced ‘f after g ’ is
the function that results from first applying g and next f .

• Standard notation for this: f · g .

• This is pronounced as “f after g”.

• Haskell implementation:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

f . g = \ x -> f (g x)

• Note the types!

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 49 / 82

Functional programming with Haskell

Function Composition

• The composition of two functions f and g , pronounced ‘f after g ’ is
the function that results from first applying g and next f .

• Standard notation for this: f · g .

• This is pronounced as “f after g”.

• Haskell implementation:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

f . g = \ x -> f (g x)

• Note the types!

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 49 / 82

Functional programming with Haskell

Function Composition

• The composition of two functions f and g , pronounced ‘f after g ’ is
the function that results from first applying g and next f .

• Standard notation for this: f · g .

• This is pronounced as “f after g”.

• Haskell implementation:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

f . g = \ x -> f (g x)

• Note the types!

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 49 / 82

Type Classes

I Exercise 3.7 Check the type of the function
(\ x y -> x /= y) in Haskell. What do you expect? What
do you get? Can you explain what you get?

I (\ x y -> x /= y) :: Eq a => a -> a -> Bool
I (\ x y -> x /= y) has type a -> a -> Bool, where a is in

type class Eq

Type Classes

I Exercise 3.7 Check the type of the function
(\ x y -> x /= y) in Haskell. What do you expect? What
do you get? Can you explain what you get?

I (\ x y -> x /= y) :: Eq a => a -> a -> Bool
I (\ x y -> x /= y) has type a -> a -> Bool, where a is in

type class Eq

Type Classes

I Type classes are collections of types that implement certain
behaviors
I Like Java interfaces, not like Java (or Python) classes

I Eq contains types that can be compared for equality (i.e., that
implement (==) and (/=))

I Ord contains types that can be ordered (i.e, that implement
(<=) and compare)

I Enum contains types that can be enumerated
I Show contains types that can be printed (i.e., that can be

presented as strings)
I etc.

Type Classes

I Type classes are collections of types that implement certain
behaviors
I Like Java interfaces, not like Java (or Python) classes
I Eq contains types that can be compared for equality (i.e., that

implement (==) and (/=))
I Ord contains types that can be ordered (i.e, that implement

(<=) and compare)
I Enum contains types that can be enumerated
I Show contains types that can be printed (i.e., that can be

presented as strings)
I etc.

Type Classes

I Exercise 3.8 Is there a difference between
(\ x y -> x /= y) and (/=)?

I Eta reduction: One can convert between λx .f (x) and f
whenever x does not appear free in f

Type Classes

I Exercise 3.8 Is there a difference between
(\ x y -> x /= y) and (/=)?

I Eta reduction: One can convert between λx .f (x) and f
whenever x does not appear free in f

Functional programming with Haskell

elem, all, and

elem :: Eq a => a -> [a] -> Bool

elem x [] = False

elem x (y:ys) = x == y || elem x ys

all :: Eq a => (a -> Bool) -> [a] -> Bool

all p = and . map p

Note the use of . for function composition.

and :: [Bool] -> Bool

and [] = True

and (x:xs) = x && and xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 50 / 82

Functional programming with Haskell

elem, all, and

elem :: Eq a => a -> [a] -> Bool

elem x [] = False

elem x (y:ys) = x == y || elem x ys

all :: Eq a => (a -> Bool) -> [a] -> Bool

all p = and . map p

Note the use of . for function composition.

and :: [Bool] -> Bool

and [] = True

and (x:xs) = x && and xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 50 / 82

Functional programming with Haskell

elem, all, and

elem :: Eq a => a -> [a] -> Bool

elem x [] = False

elem x (y:ys) = x == y || elem x ys

all :: Eq a => (a -> Bool) -> [a] -> Bool

all p = and . map p

Note the use of . for function composition.

and :: [Bool] -> Bool

and [] = True

and (x:xs) = x && and xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 50 / 82

Functional programming with Haskell

elem, all, and

elem :: Eq a => a -> [a] -> Bool

elem x [] = False

elem x (y:ys) = x == y || elem x ys

all :: Eq a => (a -> Bool) -> [a] -> Bool

all p = and . map p

Note the use of . for function composition.

and :: [Bool] -> Bool

and [] = True

and (x:xs) = x && and xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 50 / 82

Functional programming with Haskell

Sonnet 73

sonnet73 =

"That time of year thou mayst in me behold\n"

++ "When yellow leaves , or none , or few , do hang\n"

++ "Upon those boughs which shake against the cold ,\n"

++ "Bare ruin ’d choirs , where late the sweet birds sang.\n"

++ "In me thou seest the twilight of such day\n"

++ "As after sunset fadeth in the west ,\n"

++ "Which by and by black night doth take away ,\n"

++ "Death ’s second self , that seals up all in rest.\n"

++ "In me thou see ’st the glowing of such fire\n"

++ "That on the ashes of his youth doth lie ,\n"

++ "As the death -bed whereon it must expire\n"

++ "Consumed with that which it was nourish ’d by.\n"

++ "This thou perceivest , which makes thy love more strong ,\n"

++ "To love that well which thou must leave ere long."

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 51 / 82

Functional programming with Haskell

Counting

count :: Eq a => a -> [a] -> Int

count x [] = 0

count x (y:ys) | x == y = succ (count x ys)

| otherwise = count x ys

average :: [Int] -> Rational

average [] = error "empty list"

average xs = toRational (sum xs) / toRational (length xs)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 52 / 82

Functional programming with Haskell

Counting

count :: Eq a => a -> [a] -> Int

count x [] = 0

count x (y:ys) | x == y = succ (count x ys)

| otherwise = count x ys

average :: [Int] -> Rational

average [] = error "empty list"

average xs = toRational (sum xs) / toRational (length xs)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 52 / 82

Functional programming with Haskell

Nub

nub removes duplicates, as follows:

nub :: Eq a => [a] -> [a]

nub [] = []

nub (x:xs) = x : nub (filter (/= x) xs)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 48 / 82

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt exercise 3.16 on page 51 of the book.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 53 / 82

Hello World!

main :: IO ()

main = putStrLn "Hello World!"

ghc --make helloworld

[1 of 1] Compiling Main (helloworld.hs, helloworld.o)

Linking helloworld ...

./helloworld

Hello World!

I main is the entry point to a compiled program
I IO a is the type of a function that performs an I/O action

and returns an object of type a in a box
I Printing a string doesn’t really have a return value, so we

return the empty tuple (i.e., unit) ()

Hello World!

main :: IO ()

main = putStrLn "Hello World!"

ghc --make helloworld

[1 of 1] Compiling Main (helloworld.hs, helloworld.o)

Linking helloworld ...

./helloworld

Hello World!

I main is the entry point to a compiled program
I IO a is the type of a function that performs an I/O action

and returns an object of type a in a box
I Printing a string doesn’t really have a return value, so we

return the empty tuple (i.e., unit) ()

Hello World!

main :: IO ()

main = putStrLn "Hello World!"

ghc --make helloworld

[1 of 1] Compiling Main (helloworld.hs, helloworld.o)

Linking helloworld ...

./helloworld

Hello World!

I main is the entry point to a compiled program

I IO a is the type of a function that performs an I/O action
and returns an object of type a in a box
I Printing a string doesn’t really have a return value, so we

return the empty tuple (i.e., unit) ()

Hello World!

main :: IO ()

main = putStrLn "Hello World!"

ghc --make helloworld

[1 of 1] Compiling Main (helloworld.hs, helloworld.o)

Linking helloworld ...

./helloworld

Hello World!

I main is the entry point to a compiled program
I IO a is the type of a function that performs an I/O action

and returns an object of type a in a box
I Printing a string doesn’t really have a return value, so we

return the empty tuple (i.e., unit) ()

Computing with Boxes

I Why boxes?
I Haskell functions are supposed to be pure

I Do not change state
I If you call a function twice with the same arguments, you

should get the same results each time

I But I/O actions have side effects
I Communicate with and change the state of the outside world

I Boxes separate the pure and impure parts of our programs

Computing with Boxes

I Why boxes?
I Haskell functions are supposed to be pure

I Do not change state
I If you call a function twice with the same arguments, you

should get the same results each time

I But I/O actions have side effects
I Communicate with and change the state of the outside world

I Boxes separate the pure and impure parts of our programs

Computing with Boxes

I Why boxes?
I Haskell functions are supposed to be pure

I Do not change state
I If you call a function twice with the same arguments, you

should get the same results each time

I But I/O actions have side effects
I Communicate with and change the state of the outside world

I Boxes separate the pure and impure parts of our programs

Computing with Boxes

f :: IO ()

f = do

s <- getLine

putStrLn ("Hello " ++ s ++ "!")

I Do syntax
I “Glues” I/O actions together

I <- (pronounced bind) gets stuff out of boxes
I getLine :: IO String waits for the user to input a string,

and then puts it in a box
I We then open the box and bind the contents to s

Computing with Boxes

f :: IO ()

f = do

s <- getLine

putStrLn ("Hello " ++ s ++ "!")

I Do syntax
I “Glues” I/O actions together

I <- (pronounced bind) gets stuff out of boxes
I getLine :: IO String waits for the user to input a string,

and then puts it in a box
I We then open the box and bind the contents to s

Computing with Boxes

f :: IO ()

f = do

s <- getLine

putStrLn ("Hello " ++ s ++ "!")

I Do syntax
I “Glues” I/O actions together

I <- (pronounced bind) gets stuff out of boxes
I getLine :: IO String waits for the user to input a string,

and then puts it in a box
I We then open the box and bind the contents to s

String Processing

I What are the differences between the following functions?
I show
I putStr
I putStrLn
I print

String Processing

I What are the differences between the following functions?
I show takes an object of type a, where a is in type class Show,

and presents it as a string
I Quotes its argument, by putting double quotes around it

I putStr takes an object of type String, and prints it (without
quotes)

I putStrLn is like putStr, except it also prints a newline
character

I print takes an object of type a, where a is in type class Show,
and prints it as a string

I Equivalent to (putStrLn . show)
I Expressions input to the Haskell interpreter are implicitly

printed

File Processing

Prelude> :t readFile

readFile :: FilePath -> IO String

Prelude> :t writeFile

writeFile :: FilePath -> String -> IO ()

Prelude> :t appendFile

appendFile :: FilePath -> String -> IO ()

I readFile takes a FilePath (i.e., String) and outputs an IO

action that reads the file and puts its contents in a box
I writeFile and appendFile take a FilePath and a String

and return an IO action that writes the string to the file
I writeFile overwrites the file, while appendFile

concatenates the string to the end

File Processing

Prelude> :t readFile

readFile :: FilePath -> IO String

Prelude> :t writeFile

writeFile :: FilePath -> String -> IO ()

Prelude> :t appendFile

appendFile :: FilePath -> String -> IO ()

I readFile takes a FilePath (i.e., String) and outputs an IO

action that reads the file and puts its contents in a box

I writeFile and appendFile take a FilePath and a String
and return an IO action that writes the string to the file
I writeFile overwrites the file, while appendFile

concatenates the string to the end

File Processing

Prelude> :t readFile

readFile :: FilePath -> IO String

Prelude> :t writeFile

writeFile :: FilePath -> String -> IO ()

Prelude> :t appendFile

appendFile :: FilePath -> String -> IO ()

I readFile takes a FilePath (i.e., String) and outputs an IO

action that reads the file and puts its contents in a box
I writeFile and appendFile take a FilePath and a String

and return an IO action that writes the string to the file
I writeFile overwrites the file, while appendFile

concatenates the string to the end

