Functional Programming with Haskell, Part 3

Kenneth Lai

Brandeis University

September 21, 2022

Announcements

» Student hours this week
» Thu 9/22 4-5pm, Ken, remote only
> Fri 9/23 2:15-3:15pm, Bingyang, hybrid
» Final project presentations 12/14 6-9pm
» Save the date!
» For next Wednesday:
» HW1 due

Today's Plan

» Functional Programming with Haskell

Ranges

P> “Lists can also be given by not enumerating all their elements
but by indicating the range of elements: [n..m] is the list
bounded below by n and above by m.”

Ranges

P> “Lists can also be given by not enumerating all their elements
but by indicating the range of elements: [n..m] is the list
bounded below by n and above by m.”

> Works for objects that can be enumerated (i.e., converted to
and from Int)
> Integers
» Characters
> etc.

Ranges

P> “Lists can also be given by not enumerating all their elements
but by indicating the range of elements: [n..m] is the list
bounded below by n and above by m.”

> Works for objects that can be enumerated (i.e., converted to
and from Int)
> Integers
» Characters
> etc.

» [1..423] is the list of all numbers from 1 to 423
> [’g’..%s’] is the list of all characters from g to s

Infinite Lists

» [0..] denotes the list of all natural numbers

Infinite Lists

» [0..] denotes the list of all natural numbers

» “Since Haskell does not evaluate an argument unless it needs
it, it can handle infinite lists as long as it has to compute only
a finite amount of its elements.”

» [0..] does not terminate, but take 5 [0..] does

Functional programming with Haskell

Mapping

If you use the Hugs command :t to find the types of the function map,
you get the following:

Prelude> :t map
map :: forall a b. (a => b) -> [a] -> [b]

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 42/c82

Functional programming with Haskell

Mapping

If you use the Hugs command :t to find the types of the function map,
you get the following:

Prelude> :t map
map :: forall a b. (a => b) -> [a] -> [b]

The function map takes a function and a list and returns a list containing
the results of applying the function to the individual list members.

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 42/c82

Functional programming with Haskell

Mapping

If you use the Hugs command :t to find the types of the function map,
you get the following:

Prelude> :t map
map :: forall a b. (a => b) -> [a] -> [b]

The function map takes a function and a list and returns a list containing
the results of applying the function to the individual list members.

If £ is a function of type a => b and xs is a list of type [al, then

map f xs will return a list of type [b]. E.g., map (°2) [1..9] will
produce the list of squares

[1, 4, 9, 16, 25, 36, 49, 64, 81]

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 42/c82

Functional programming with Haskell

Sections

In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 43 /82

Functional programming with Haskell

Sections

In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

(x op) is the operation resulting from applying op to its lefthand
side argument.

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 43 /82

Functional programming with Haskell

Sections

In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

(x op) is the operation resulting from applying op to its lefthand
side argument.

(op) is the prefix version of the operator.

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 43 /82

Functional programming with Haskell

Sections

In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

(x op) is the operation resulting from applying op to its lefthand
side argument.

(op) is the prefix version of the operator.

Thus (27) is the operation that computes powers of 2, and

map (27) [1..10] will yield

(2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 43 /82

Functional programming with Haskell

Sections

In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

(x op) is the operation resulting from applying op to its lefthand
side argument.

(op) is the prefix version of the operator.

Thus (27) is the operation that computes powers of 2, and
map (27) [1..10] will yield

(2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

Similarly, (>3) denotes the property of being greater than 3, and
(3>) the property of being smaller than 3.

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 43 /82

Functional programming with Haskell

Map

If p is a property (an operation of type a -> Bool) and 1 is a list of type
[al, then map p 1 will produce a list of type Bool (a list of truth
values), like this:

Prelude> map (>3) [1..6]
[False, False, False, True, True, True]
Prelude>

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 44-/-82

Functional programming with Haskell

Map

If p is a property (an operation of type a -> Bool) and 1 is a list of type
[al, then map p 1 will produce a list of type Bool (a list of truth
values), like this:

Prelude> map (>3) [1..6]
[False, False, False, True, True, True]
Prelude>

map :: (a -> b) -> [a] -> [b]

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 44-/-82

Functional programming with Haskell

Map

If p is a property (an operation of type a -> Bool) and 1 is a list of type
[al, then map p 1 will produce a list of type Bool (a list of truth
values), like this:

Prelude> map (>3) [1..6]
[False, False, False, True, True, True]
Prelude>

map :: (a -> b) -> [a] -> [b]

map £ [] = []
map f (x:xs) = (f x) : map f xs

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 44-/-82

Functional programming with Haskell

Filter

A function for filtering out the elements from a list that satisfy a given
property.

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 45 /82

Functional programming with Haskell

Filter

A function for filtering out the elements from a list that satisfy a given
property.

Prelude> filter (>3) [1..10]
[4,5,6,7,8,9,10]

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 45 /82

Functional programming with Haskell

Filter

A function for filtering out the elements from a list that satisfy a given
property.

Prelude> filter (>3) [1..10]
[4,5,6,7,8,9,10]

filter :: (a -> Bool) -> [a] -> [a]

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 45 /82

Functional programming with Haskell

Filter

A function for filtering out the elements from a list that satisfy a given
property.

Prelude> filter (>3) [1..10]
[4,5,6,7,8,9,10]

filter :: (a -> Bool) -> [a] -> [a]

filter p [1 = []
filter p (x:xs) | p
| otherw1se

x : filter p xs
filter p xs

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 45 /82

Guarded Equations

foo t | condition_1 = body_1
| condition_2 = body_2
| otherwise = body_3

» If condition_1 is true, then foo t = body_1
» Else if condition_2 is true, then foo t = body_2
> Else, foo t = body_3

Guarded Equations

» Can also be written as:

foo t = if condition_1 then body_1
else if condition_2 then body_2
else body_3

Guarded Equations

» Can also be written as:

foo t = if condition_1 then body_1
else if condition_2 then body_2
else body_3

» Guards are more common, though, especially when you have
multiple if conditions

Functional programming with Haskell

List comprehension

List comprehension is defining lists by the following method:
[x | x <- xs, property x]

This defines the sublist of xs of all items satisfying property. It is
equivalent to:

filter property xs

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011

4682

Functional programming with Haskell

Examples

someEvens =[x | x <- [1..1000], even x 1]
evensUntil n = [x | x <- [1..n], even x]
allEvens = [x| x <- [1..], even x]

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 47 /82

Functional programming with Haskell

Examples

someEvens =[x | x <- [1..1000], even x 1]
evensUntil n = [x | x <- [1..n], even x]
allEvens = [x| x <- [1..], even x]
Equivalently

someEvens = filter even [1..1000]

evensUntil n

allEvens

Jan van Eijck & Christina Unger

filter even [1..n]

filter even [1..]

Computational Semantics ESSLEl 2011

4782

Functional programming with Haskell

Function Composition

The composition of two functions f and g, pronounced ‘f after g’ is
the function that results from first applying g and next f.

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 49 /82

Functional programming with Haskell

Function Composition

The composition of two functions f and g, pronounced ‘f after g’ is
the function that results from first applying g and next f.

Standard notation for this: f - g.

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 49 /82

Functional programming with Haskell

Function Composition

The composition of two functions f and g, pronounced ‘f after g’ is
the function that results from first applying g and next f.

Standard notation for this: f - g.

This is pronounced as “f after g".

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 49 /82

Functional programming with Haskell

Function Composition

The composition of two functions f and g, pronounced ‘f after g’ is
the function that results from first applying g and next f.

Standard notation for this: f - g.
This is pronounced as “f after g".
Haskell implementation:

(.) :: (@a->Db) > (c >a) > (c ->b)
f.g=\x->1f (gx

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 49 /82

Functional programming with Haskell

Function Composition

The composition of two functions f and g, pronounced ‘f after g’ is
the function that results from first applying g and next f.

Standard notation for this: f - g.

This is pronounced as “f after g".

Haskell implementation:

(.) :: (@->b) > (c > a) > (c -> b)
f.g=\x—>f (gx)

Note the types!

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 49 /82

Type Classes

» Exercise 3.7 Check the type of the function
(\ x y => x /= y) in Haskell. What do you expect? What
do you get? Can you explain what you get?

Type Classes

» Exercise 3.7 Check the type of the function

(\ x y => x /= y) in Haskell. What do you expect? What
do you get? Can you explain what you get?

» (\xy ->x/=y) :: Eqa=>a->a->Bool

> (\ xy -> x /= y) hastype a -> a -> Bool, where a is in
type class Eq

Type Classes

» Type classes are collections of types that implement certain
behaviors

> Like Java interfaces, not like Java (or Python) classes

Type Classes

» Type classes are collections of types that implement certain
behaviors

>
>

>

Like Java interfaces, not like Java (or Python) classes

Eq contains types that can be compared for equality (i.e., that
implement (==) and (/=))

Ord contains types that can be ordered (i.e, that implement
(<=) and compare)

Enum contains types that can be enumerated

Show contains types that can be printed (i.e., that can be
presented as strings)

etc.

Type Classes

» Exercise 3.8 Is there a difference between
(\ xy ->x/=y)and (/=)?

Type Classes

» Exercise 3.8 Is there a difference between
(\ xy ->x/=y)and (/=)?

» Eta reduction: One can convert between Ax.f(x) and f
whenever x does not appear free in f

Functional programming with Haskell

elem, all, and

elem :: Eq a => a -> [a] -> Bool
elem x [] False
elem x (y:ys) = x ==y || elem x ys

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 50 /<82

Functional programming with Haskell

elem, all, and

elem :: Eq a => a -> [a] -> Bool
elem x [] = False
elem x (y:ys) = x ==y || elem x ys

all :: Eq a => (a -> Bool) -> [a] -> Bool
all p = and . map p

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011

50/-82

Functional programming with Haskell

elem, all, and

elem :: Eq a => a -> [a] -> Bool
elem x [] = False
elem x (y:ys) = x ==y || elem x ys

all :: Eq a => (a -> Bool) -> [a] -> Bool
all p = and . map p

Note the use of . for function composition.

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011

50/-82

Functional programming with Haskell

elem, all, and

elem :: Eq a => a -> [a] -> Bool
elem x [] False
elem x (y:ys) = x ==y || elem x ys

all :: Eq a => (a -> Bool) -> [a] -> Bool
all p = and . map p

Note the use of . for function composition.

and :: [Bool] -> Bool
and [] = True
and (x:xs) = x &&% and xs

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 50 /82

Functional programming with Haskell

Sonnet 73

sonnet73 =
"That time of year thou mayst in me behold\n"

++
++
++
++
++
++
++
++
++
++
++
++
++

"When yellow leaves, or none, or few, do hang\n"

"Upon those boughs which shake against the cold,\n"
"Bare ruin’d choirs, where late the sweet birds sang.\n"
"In me thou seest the twilight of such day\n"

"As after sunset fadeth in the west,\n"

"Which by and by black night doth take away,\n"

"Death’s second self, that seals up all in rest.\n"

"In me thou see’st the glowing of such fire\n"

"That on the ashes of his youth doth lie,\n"

"As the death-bed whereon it must expire\n"

"Consumed with that which it was nourish’d by.\n"

"This thou perceivest, which makes thy love more strong,\
"To love that well which thou must leave ere long."

B

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 51 /82

Functional programming with Haskell

Counting

count :: Eq a => a -> [a] -> Int

count x [] =0

count x (y:ys) | succ (count x ys)
| = count x ys

o M
1]
]

s <

s

n

o

n o

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 52/c82

Functional programming with Haskell

Counting
count Eq a => a -> [a]l -> Int
count x =0
count x (y:ys) | x ==y = succ (count x ys)
| otherwise = count x ys
average [Int] -> Ratiomnal
average = error "empty list"
average = toRational (sum xs) / toRational (length xs)

Jan van Eijck & Christina Unger Computational Semantics

ESSLEl 2011

52/:82

Functional programming with Haskell

Nub

nub removes duplicates, as follows:

nub :: Eq a => [a] -> [a]
nub [] = []

nub (x:xs) = x : nub (filter (/= x) xs8)

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011

4882

Functional programming with Haskell

Some Commands to Try Out

putStrLn sonnet73

map tolLower sonnet73

map toUpper sonnet73

filter (‘elem‘ "aeiou") sonnet73
count ’t’ sonnet73

count ’t’ (map toLower sonnet73)
count "thou" (words sonnet73)

count "thou" (words (map toLower sonnet73))

Jan van Eijck & Christina Unger Computational Semantics ESSLEl 2011 5382

Hello World!

main :: I0 Q)
main = putStrLn "Hello World!"

Hello World!

main :: I0 Q)
main = putStrLn "Hello World!"

ghc --make helloworld
[1 of 1] Compiling Main (helloworld.hs, helloworld.o)
Linking helloworld ...

./helloworld
Hello World!

Hello World!

main :: I0 Q)
main = putStrLn "Hello World!"

ghc --make helloworld
[1 of 1] Compiling Main (helloworld.hs, helloworld.o)
Linking helloworld ...

./helloworld
Hello World!

P> main is the entry point to a compiled program

Hello World!

main :: I0 Q)
main = putStrLn "Hello World!"

ghc --make helloworld
[1 of 1] Compiling Main (helloworld.hs, helloworld.o)
Linking helloworld ...

./helloworld
Hello World!

P> main is the entry point to a compiled program

» I0 a is the type of a function that performs an I/O action
and returns an object of type a in a box
» Printing a string doesn't really have a return value, so we
return the empty tuple (i.e., unit) O

Computing with Boxes

> Why boxes?
» Haskell functions are supposed to be pure

» Do not change state
» If you call a function twice with the same arguments, you
should get the same results each time

Computing with Boxes

> Why boxes?
» Haskell functions are supposed to be pure
» Do not change state
» If you call a function twice with the same arguments, you
should get the same results each time
» But I/O actions have side effects

» Communicate with and change the state of the outside world

Computing with Boxes

> Why boxes?
» Haskell functions are supposed to be pure

» Do not change state
» If you call a function twice with the same arguments, you
should get the same results each time

» But I/O actions have side effects
» Communicate with and change the state of the outside world
» Boxes separate the pure and impure parts of our programs

Computing with Boxes

f:: 10 O
f = do
s <- getLine
putStrLn ("Hello " ++ s ++ "I")

Computing with Boxes

f:: 10 O
f = do
s <- getLine
putStrLn ("Hello " ++ s ++ "I")

» Do syntax
> “Glues" /O actions together

Computing with Boxes

0 O
= do
s <- getLine
putStrLn ("Hello " ++ s ++ "I")

H Hh

» Do syntax
> “Glues" /O actions together
» <- (pronounced bind) gets stuff out of boxes
> getline :: IO String waits for the user to input a string

and then puts it in a box
» We then open the box and bind the contents to s

String Processing

> What are the differences between the following functions?

> show

> putStr
> putStrLn
> print

String Processing

> What are the differences between the following functions?

» show takes an object of type a, where a is in type class Show,
and presents it as a string

» Quotes its argument, by putting double quotes around it
» putStr takes an object of type String, and prints it (without
quotes)
» putStrLn is like putStr, except it also prints a newline
character
» print takes an object of type a, where a is in type class Show,
and prints it as a string
» Equivalent to (putStrLn . show)

» Expressions input to the Haskell interpreter are implicitly
printed

File Processing

Prelude> :t readFile

readFile :: FilePath -> IO String
Prelude> :t writeFile

writeFile :: FilePath -> String -> I0 (O
Prelude> :t appendFile

appendFile :: FilePath -> String -> I0 O

File Processing

Prelude> :t readFile

readFile :: FilePath -> IO String
Prelude> :t writeFile

writeFile :: FilePath -> String -> I0 (O
Prelude> :t appendFile

appendFile :: FilePath -> String -> I0 O

» readFile takes a FilePath (i.e., String) and outputs an I0
action that reads the file and puts its contents in a box

File Processing

Prelude> :t readFile

readFile :: FilePath -> IO String
Prelude> :t writeFile

writeFile :: FilePath -> String -> I0 (O
Prelude> :t appendFile

appendFile :: FilePath -> String -> I0 O

» readFile takes a FilePath (i.e., String) and outputs an I0
action that reads the file and puts its contents in a box

> writeFile and appendFile take a FilePath and a String
and return an I0 action that writes the string to the file
> writeFile overwrites the file, while appendFile
concatenates the string to the end

