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Announcements

I By 11:59pm today
I Personal Learning Goals Part 1 due

I For next Monday
I If you can, do exercises 7, 8, 9, and 11 (on last slide)

I For 9/21
I HW1 due



Today’s Plan

I More Tools for Formal Semantics
I Lambda Calculus
I Types
I Functional Programming with Haskell

I (we’ll see how far we get...)
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Outline

Lambda calculus

Lambdas changed my life.

(Barbara H. Partee)

All you need is lambda.

(Simon Peyton-Jones)
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Outline

History

In 1936, Turing and Church independently introduced two equivalent
models of computation:

• Alan Turing: Turing Machine
A function is computable if a sequence of

instructions can be specified and then

carried out by a simple abstract

computational device.

• Alonzo Church: Lambda Calculus
Every computable function is a function

that is definable in the lambda calculus.
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Outline

Connection to programming languages

• Imperative programming languages are based on the way a Turing
machine is instructed.

• Functional programming languages are based on the lambda
calculus.

In fact, the lambda calculus is the smallest universal programming
language of the world (universal, because any computable function can be
expressed and evaluated).

• Expressions correspond to programs.

• The reduction of an expression corresponds to program execution.

In fact, it is the core of functional programming languages, which are
basically executable (typed) lambda calculi extended with constants,
datatypes, input/output, etc.
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Outline

Lambda calculus

The lambda calculus is a formal system for defining and investigating
functions.

Two basic concept:

• function abstraction for representing functions, using a
variable-binding operator λ

• function application, corresponding to substitution of bound variables
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Outline Formal definition and properties

Formal definition and properties
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Outline Formal definition and properties

Lambda calculus: Formal definition

Variables v and expressions E are defined as follows:

v ::= x | v ′

E ::= v | λv .E | (E E )
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Outline Formal definition and properties

Variables

Variables v and expressions E are defined as follows:

v ::= x | v ′

E ::= v | λv .E | (E E )

For our purposes, we write variables as lower case letters x , y , z , . . .,
possibly with indices.

Haskell: Variables (including function names) begin with a lower case
letter.

• x, x’, x1

• variable, newVAR, my variable

• . . .
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Outline Formal definition and properties

Function abstraction

v ::= x | v ′

E ::= v | λv .E | (E E )

λv .E represents a function, where v is the variable abstracted over (bound
by the operator λ), and E is the body of the function.

Examples: λx .x , λx .λy .x

Haskell: Function abstraction is written as \ v -> E.

• \ x -> x

• \ x -> (\ y -> x)

or shorter: \ x y -> x
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Outline Formal definition and properties

Function application

v ::= x | v ′

E ::= v | λv .E | (E E )

Function application represents applying an expression to another
expression, e.g. a function to an argument.

Example: (λx .x y)

Haskell: Function application is written as E E.

• (\ x -> x) y

• (\ x y -> x) z
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Function application

Note: Function application can also be written as (E )(E ), with
parentheses or square brackets for readability

Example: (λx .x)(y)



Outline Formal definition and properties

Reducing expressions

Function application expressions can be reduced to simpler expressions.
This corresponds to substitution of bound variables.

Reduction rule (called beta reduction):

(λv .E1 E2) B E1 [v := E2]

Where E1 [v := E2] denotes the substitution of E2

for all free occurrences of v in E1.

Example:

• (λx .(x y) λz .z) B

(λz .z y) B y
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Outline Formal definition and properties

Free and bound variables

An occurrence of the variable v in the expression E is bound if it is in the
scope of a lambda prefix λv .

Example: λy .((λx .x y) x)

Note: When substituting expressions, we have to make sure that no variables get
accidentally captured.

• (λxλy .(y x) y)

This can be ensured by variable renaming.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 13 / 73



Outline Formal definition and properties

Free and bound variables

An occurrence of the variable v in the expression E is bound if it is in the
scope of a lambda prefix λv .

Example: λy .((λx .x y) x)

Note: When substituting expressions, we have to make sure that no variables get
accidentally captured.

• (λxλy .(y x) y)

This can be ensured by variable renaming.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 13 / 73



Free and bound variables

Note: Other prefixes such as ∀v and ∃v (which we will learn more
about in a week or so) also bind occurrences of v within their
scopes

I Variable renaming is also called alpha conversion
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Outline Formal definition and properties

Observation

Reductions need not come to an end.

• (λx .(x x) λx .(x x))

• (λx .((x x) x) λx .((x x) x))
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Outline Formal definition and properties

Confluence

The result of beta reduction is independent from the order of reduction,
i.e. if an expression can be evaluated in two different ways and both ways
terminate, then both ways will yield the same result (Church-Rosser
theorem).

• (λy .(y x) (λx .x z))

Note: The reduction order does, however, play a role for efficiency and can
influence whether a reduction terminates or not.

• (λz .y (λx .(x x) λx .(x x)))

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 15 / 73



Outline Formal definition and properties

Conventions

• Applications associate to the left; thus, when applying a function to a
number of arguments, we can write f x y z instead of (((f x) y) z).

• The body of a lambda abstraction (the part after the dot) extends as
far to the right as possible. I.e., λx .E1 E2 means λx .(E1 E2), and not
(λx .E1) E2.
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Outline Formal definition and properties

Adding function constants

Lambda calculus as we saw it is already enough to define natural numbers
and arithmetic operations. We can abbreviate the corresponding
expressions by adding constants to the language:

• 1,2,3. . . for natural numbers

• + and * for addition and multiplication

Analogously, we can add constants a, b, c for entities, wizard for unary
functions, admire for binary functions, and so on.
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Exercises

I Exercises from Coppock and Champollion (2022) Chapter 5,
Exercise 3

I For each of the following lambda expressions, apply beta
reduction to give a completely reduced expression (i.e., in beta
normal form):

1. [λx .P(x)](a)
4. [λx .R(y , a)](b)



Exercises

I Exercises from Coppock and Champollion (2022) Chapter 5,
Exercise 3

I For each of the following lambda expressions, apply beta
reduction to give a completely reduced expression (i.e., in beta
normal form):

7. [[λxλy .R(x , y)](b)](a)
8. [λx .[λy .R(x , y)](b)](a)
9. [λX .∃x .[P(x) ∧ X (x)]](λy .R(a, y))

11. [λX .∃x .[P(x) ∧ X (x)]](λy .R(y , x))


