### Tools for Formal Semantics

Kenneth Lai

Brandeis University

August 31, 2022

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

#### Announcements

#### By 11:59pm today

Fill out the poll for student hours

- For next Wednesday
  - Personal Learning Goals Part 1 due
  - Read van Eijck and Unger Chapter 3
  - (Try to) install Haskell

https://www.haskell.org/ghcup/

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Today's Plan

#### Course Plan

Tools for Formal Semantics

- Sets
- Relations
- Functions
- Lambda Calculus

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Types

# Today's Plan

#### Course Plan

Tools for Formal Semantics

- Sets
- Relations
- Functions
- Lambda Calculus
- Types
- (we'll see how far we get...)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

# We will begin with truth-conditional meaning and formal semantics

- We will begin with truth-conditional meaning and formal semantics
  - Tools for building models: sets, relations, functions, types
  - Lambda calculus for representing and combining functions
  - Propositional and predicate (first-order) logic for evaluating the truth of sentences
  - Functional programming in Haskell as an implementation of formal semantics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- We will begin with truth-conditional meaning and formal semantics
  - Tools for building models: sets, relations, functions, types
  - Lambda calculus for representing and combining functions
  - Propositional and predicate (first-order) logic for evaluating the truth of sentences
  - Functional programming in Haskell as an implementation of formal semantics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We will be able to translate expressions (from a fragment of English) into a logical form

There are some expressions whose truth conditions cannot be evaluated relative to a model of a single world

Intensional constructs, attitude verbs, time and tense, etc.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

There are some expressions whose truth conditions cannot be evaluated relative to a model of a single world

Intensional constructs, attitude verbs, time and tense, etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▶ We will introduce possible worlds to model these expressions

There are some expressions whose truth conditions cannot be evaluated relative to a model of a single world

Intensional constructs, attitude verbs, time and tense, etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- We will introduce possible worlds to model these expressions
- Functors (specifically applicative functors) allow us to compose meanings within a possible world

There are some expressions whose truth conditions cannot be evaluated relative to a model of a single world

Intensional constructs, attitude verbs, time and tense, etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- We will introduce possible worlds to model these expressions
- Functors (specifically applicative functors) allow us to compose meanings within a possible world
- Modal logic allows us to evaluate the truth of sentences across possible worlds

#### We can't run from context forever...

Resolving scope ambiguity, anaphora, etc.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

#### We can't run from context forever...

- Resolving scope ambiguity, anaphora, etc.
- Continuations (a type of monad) allow us treat expression meanings as functions of their contexts

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- We can't run from context forever...
  - Resolving scope ambiguity, anaphora, etc.
- Continuations (a type of monad) allow us treat expression meanings as functions of their contexts

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

These can be applied to both sentence-level and discourse-level contexts

We will then discuss aspects of use-based meaning and distributional semantics

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

 We will then discuss aspects of use-based meaning and distributional semantics

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Methods of abstraction over contexts based on
  - Counting
  - Prediction (i.e., language modeling)

 We will then discuss aspects of use-based meaning and distributional semantics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Methods of abstraction over contexts based on
  - Counting
  - Prediction (i.e., language modeling)



This is a lot, but it only scratches the surface of computational semantics

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

This is a lot, but it only scratches the surface of computational semantics

- Other topics
  - Meaning in languages other than English
  - Semantics of non-declarative sentences (e.g., interrogatives, imperatives, etc.)
  - Distributional semantics of expressions other than words
  - Computational lexical semantics
  - Meaning representations (other than logical forms or vectors)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

etc.

This is a lot, but it only scratches the surface of computational semantics

- Other topics
  - Meaning in languages other than English
  - Semantics of non-declarative sentences (e.g., interrogatives, imperatives, etc.)
  - Distributional semantics of expressions other than words
  - Computational lexical semantics
  - Meaning representations (other than logical forms or vectors)etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

This is where your paper presentations and (if you're up for it) final project come in

#### "A set is a collection of definite, distinct objects."

 (note: all quotes are from van Eijck and Unger (2010) unless otherwise stated)

- "A set is a collection of definite, distinct objects."
  - (note: all quotes are from van Eijck and Unger (2010) unless otherwise stated)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The members of a set are also called its elements
  - $a \in A$ : the object a is an element of the set A
  - $a \notin A$ : the object *a* is not an element of the set *A*

"A set is a collection of definite, distinct objects."

 (note: all quotes are from van Eijck and Unger (2010) unless otherwise stated)

The members of a set are also called its elements

- $a \in A$ : the object *a* is an element of the set *A*
- $a \notin A$ : the object *a* is not an element of the set *A*
- Principle of extensionality: if two sets have the same elements, then they are equal

In other words, "sets are fully determined by their members"

Ways to specify a set

- List its members
  - $A = \{1, 2, 3\}$
  - Order and multiplicity don't matter: {red, white, blue} = {white, blue, white, red}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Describe it in language
  - "the set of colours of the Dutch flag"
- Set comprehension
  - $\blacktriangleright E = \{2n | n \in \mathbb{N}\}\$

#### Special sets

 $\blacktriangleright$  N: the set of natural numbers

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- $\blacktriangleright$   $\mathbb{Z}$ : the set of integers
- Ø: the empty set

If every element of a set A is also an element of a set B, then A is a subset of B: A ⊆ B

• A = B iff (if and only if)  $A \subseteq B$  and  $B \subseteq A$ 

#### Set operations

- Union: A ∪ B is the set of objects that are either elements of A or elements of B
- Intersection: A ∩ B is the set of objects that are both elements of A and elements of B
- Complement: A is the set of objects in the universe (or domain) U that are not elements of A
- Difference: A B is the set of objects that are elements of A but not elements of B
- Cartesian product: A × B is the set of all ordered pairs (a, b) such that a is an element of A and b is an element of B

#### Exercises from the book

 (I encourage you all, as you are reading, to do the exercises, or at least figure out how you could do them.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Some of the easier exercises might show up in class; some of the harder exercises might show up on your homework...)

#### Exercises from the book

- (I encourage you all, as you are reading, to do the exercises, or at least figure out how you could do them.
- Some of the easier exercises might show up in class; some of the harder exercises might show up on your homework...)
- **Exercise 2.1** Explain why  $\emptyset \subseteq A$  holds for every set A.
- ▶ **Exercise 2.2** Explain the difference between Ø and {Ø}.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Exercise not from the book

Let 
$$A = \{1, 2\}, B = \{2, 3\}$$
, and  $U = \{0, 1, 2, 3\}$ . What are...  
 $A \cup B$   
 $A \cap B$   
 $\overline{A}$   
 $A \cap B$   
 $\overline{A}$   
 $A - B$   
 $A \times B$ 

▶ A relation between two sets A and B is a set of ordered pairs (a, b) such that  $a \in A$  and  $b \in B$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A relation between A and B is a subset of  $A \times B$ 

- More generally, we can have relations between more than two sets
  - A binary relation is a set of ordered pairs
  - A ternary relation is a set of ordered triples
  - ▶ ...
  - An *n*-ary relation is a set of *n*-tuples (ordered sequences of *n* objects)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- More generally, we can have relations between more than two sets
  - A binary relation is a set of ordered pairs
  - A ternary relation is a set of ordered triples
  - ►.
  - An *n*-ary relation is a set of *n*-tuples (ordered sequences of *n* objects)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- More generally, we can have relations between fewer than two sets
  - A unary relation (property) of A is a subset of A

#### Operations on relations

- Let R and S be binary relations on a set U (i.e., between U and itself)
- Composition: R ∘ S is the set of pairs (x, y) such that there is some z with (x, z) ∈ R and (z, y) ∈ S

• Converse:  $R^{\sim}$  is the set of pairs (y, x) such that  $(x, y) \in R$ 

- Properties of relations
  - ▶ *R* is reflexive iff for all  $x \in U$ ,  $(x, x) \in R$
  - R is symmetric iff for all x, y ∈ U, if (x, y) ∈ R, then
     (y, x) ∈ R
  - ▶ *R* is transitive iff for all  $x, y, z \in U$ , if  $(x, y) \in R$  and  $(y, z) \in R$ , then  $(x, z) \in R$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



- ► Exercise 2.5 What is the composition of {(n, n + 2)|n ∈ N} with itself?
- Exercise 2.9 Can you give an example of a transitive relation R for which R \circ R = R does not hold?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- "Functions are relations with the following special property: for any (a, b) and (a, c) in the relation it has to hold that b and c are equal.
- Thus a function from a set A (called domain) to a set B (called range) is a relation between A and B such that for each a ∈ A there is one and only one associated b ∈ B.
- In other words, a function is a mechanism that maps an input value to a uniquely determined output value."

Extensional view of functions: functions as ordered pairs

| Kelvin | Celsius | Fahrenheit |                           |
|--------|---------|------------|---------------------------|
| 0      | -273.15 | -459.67    | (absolute zero)           |
| 273.15 | 0       | 32         | (freezing point of water) |
| 310.15 | 37      | 98.6       | (human body temperature)  |
| 373.13 | 99.98   | 211.96     | (boiling point of water)  |
| 505.9  | 232.8   | 451        | (paper auto-ignites)      |

- Intensional view of functions: functions as instructions for computation

  - Function from Kelvin to Celsius: x → x 273.15
     Function from Celsius to Fahrenheit: x → x × 9/5 + 32

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Functions, as relations, can be composed



#### Functions, as relations, can be composed

- Extensional view of function composition: f ⋅ g is the set of pairs (x, y) such that there is some z with (x, z) ∈ g and (z, y) ∈ f
  - Warning! This is the reverse order of operations from the definition of relation composition

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Functions, as relations, can be composed

- Extensional view of function composition: f ⋅ g is the set of pairs (x, y) such that there is some z with (x, z) ∈ g and (z, y) ∈ f
  - Warning! This is the reverse order of operations from the definition of relation composition
- ▶ Intensional view of function composition:  $(f \cdot g)(x) = f(g(x))$ 
  - First apply g to x, then apply f to g(x) (the output of g)

Right to left, or inside to outside

The characteristic function of a set A is the function that maps all elements of A to True and all objects in the universe (or domain) U that are not elements of A to False

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Relations, as sets, can be represented as characteristic functions



Exercise 2.10 The successor function s : N → N on the natural numbers is given by n → n + 1. What is the composition of s with itself?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ