Tools for Formal Semantics

Kenneth Lai

Brandeis University

August 31, 2022

Announcements

- By 11:59pm today
- Fill out the poll for student hours
- For next Wednesday
- Personal Learning Goals Part 1 due
- Read van Eijck and Unger Chapter 3
- (Try to) install Haskell
- https://www.haskell.org/ghcup/

Today's Plan

- Course Plan
- Tools for Formal Semantics
- Sets
- Relations
- Functions
- Lambda Calculus
- Types

Today's Plan

- Course Plan
- Tools for Formal Semantics
- Sets
- Relations
- Functions
- Lambda Calculus
- Types
- (we'll see how far we get...)

Course Plan

- We will begin with truth-conditional meaning and formal semantics

Course Plan

- We will begin with truth-conditional meaning and formal semantics
- Tools for building models: sets, relations, functions, types
- Lambda calculus for representing and combining functions
- Propositional and predicate (first-order) logic for evaluating the truth of sentences
- Functional programming in Haskell as an implementation of formal semantics

Course Plan

- We will begin with truth-conditional meaning and formal semantics
- Tools for building models: sets, relations, functions, types
- Lambda calculus for representing and combining functions
- Propositional and predicate (first-order) logic for evaluating the truth of sentences
- Functional programming in Haskell as an implementation of formal semantics
- We will be able to translate expressions (from a fragment of English) into a logical form

Course Plan

- There are some expressions whose truth conditions cannot be evaluated relative to a model of a single world
- Intensional constructs, attitude verbs, time and tense, etc.

Course Plan

- There are some expressions whose truth conditions cannot be evaluated relative to a model of a single world
- Intensional constructs, attitude verbs, time and tense, etc.
- We will introduce possible worlds to model these expressions

Course Plan

- There are some expressions whose truth conditions cannot be evaluated relative to a model of a single world
- Intensional constructs, attitude verbs, time and tense, etc.
- We will introduce possible worlds to model these expressions
- Functors (specifically applicative functors) allow us to compose meanings within a possible world

Course Plan

- There are some expressions whose truth conditions cannot be evaluated relative to a model of a single world
- Intensional constructs, attitude verbs, time and tense, etc.
- We will introduce possible worlds to model these expressions
- Functors (specifically applicative functors) allow us to compose meanings within a possible world
- Modal logic allows us to evaluate the truth of sentences across possible worlds

Course Plan

- We can't run from context forever...
- Resolving scope ambiguity, anaphora, etc.

Course Plan

- We can't run from context forever...
- Resolving scope ambiguity, anaphora, etc.
- Continuations (a type of monad) allow us treat expression meanings as functions of their contexts

Course Plan

- We can't run from context forever...
- Resolving scope ambiguity, anaphora, etc.
- Continuations (a type of monad) allow us treat expression meanings as functions of their contexts
- These can be applied to both sentence-level and discourse-level contexts

Course Plan

- We will then discuss aspects of use-based meaning and distributional semantics

Course Plan

- We will then discuss aspects of use-based meaning and distributional semantics
- Methods of abstraction over contexts based on
- Counting
- Prediction (i.e., language modeling)

Course Plan

- We will then discuss aspects of use-based meaning and distributional semantics
- Methods of abstraction over contexts based on
- Counting
- Prediction (i.e., language modeling)
- If we have time:

Course Plan

- This is a lot, but it only scratches the surface of computational semantics

Course Plan

- This is a lot, but it only scratches the surface of computational semantics
- Other topics
- Meaning in languages other than English
- Semantics of non-declarative sentences (e.g., interrogatives, imperatives, etc.)
- Distributional semantics of expressions other than words
- Computational lexical semantics
- Meaning representations (other than logical forms or vectors)
- etc.

Course Plan

- This is a lot, but it only scratches the surface of computational semantics
- Other topics
- Meaning in languages other than English
- Semantics of non-declarative sentences (e.g., interrogatives, imperatives, etc.)
- Distributional semantics of expressions other than words
- Computational lexical semantics
- Meaning representations (other than logical forms or vectors)
- etc.
- This is where your paper presentations and (if you're up for it) final project come in

Sets

- "A set is a collection of definite, distinct objects."
- (note: all quotes are from van Eijck and Unger (2010) unless otherwise stated)

Sets

- "A set is a collection of definite, distinct objects."
- (note: all quotes are from van Eijck and Unger (2010) unless otherwise stated)
- The members of a set are also called its elements
- $a \in A$: the object a is an element of the set A
- $a \notin A$: the object a is not an element of the set A

Sets

- "A set is a collection of definite, distinct objects."
- (note: all quotes are from van Eijck and Unger (2010) unless otherwise stated)
- The members of a set are also called its elements
- $a \in A$: the object a is an element of the set A
- $a \notin A$: the object a is not an element of the set A
- Principle of extensionality: if two sets have the same elements, then they are equal
- In other words, "sets are fully determined by their members"

Sets

- Ways to specify a set
- List its members
- $A=\{1,2,3\}$
- Order and multiplicity don't matter: $\{$ red, white, blue $\}=\{$ white, blue, white, red $\}$
- Describe it in language
- "the set of colours of the Dutch flag"
- Set comprehension
- $E=\{2 n \mid n \in \mathbb{N}\}$

Sets

- Special sets
- \mathbb{N} : the set of natural numbers
- \mathbb{Z} : the set of integers
- \varnothing : the empty set

Sets

- If every element of a set A is also an element of a set B, then A is a subset of $B: A \subseteq B$
- $A=B$ iff (if and only if) $A \subseteq B$ and $B \subseteq A$

Sets

- Set operations
- Union: $A \cup B$ is the set of objects that are either elements of A or elements of B
- Intersection: $A \cap B$ is the set of objects that are both elements of A and elements of B
- Complement: \bar{A} is the set of objects in the universe (or domain) U that are not elements of A
- Difference: $A-B$ is the set of objects that are elements of A but not elements of B
- Cartesian product: $A \times B$ is the set of all ordered pairs (a, b) such that a is an element of A and b is an element of B

Sets

- Exercises from the book
- (I encourage you all, as you are reading, to do the exercises, or at least figure out how you could do them.
- Some of the easier exercises might show up in class; some of the harder exercises might show up on your homework...)

Sets

- Exercises from the book
- (I encourage you all, as you are reading, to do the exercises, or at least figure out how you could do them.
- Some of the easier exercises might show up in class; some of the harder exercises might show up on your homework...)
- Exercise 2.1 Explain why $\varnothing \subseteq A$ holds for every set A.
- Exercise 2.2 Explain the difference between \varnothing and $\{\varnothing\}$.

Sets

- Exercise not from the book
- Let $A=\{1,2\}, B=\{2,3\}$, and $U=\{0,1,2,3\}$. What are...
- $A \cup B$
- $A \cap B$
- \bar{A}
- $A-B$
- $A \times B$

Relations

- A relation between two sets A and B is a set of ordered pairs (a, b) such that $a \in A$ and $b \in B$
- A relation between A and B is a subset of $A \times B$

Relations

- More generally, we can have relations between more than two sets
- A binary relation is a set of ordered pairs
- A ternary relation is a set of ordered triples
- An n-ary relation is a set of n-tuples (ordered sequences of n objects)

Relations

- More generally, we can have relations between more than two sets
- A binary relation is a set of ordered pairs
- A ternary relation is a set of ordered triples
- An n-ary relation is a set of n-tuples (ordered sequences of n objects)
- More generally, we can have relations between fewer than two sets
- A unary relation (property) of A is a subset of A

Relations

- Operations on relations
- Let R and S be binary relations on a set U (i.e., between U and itself)
- Composition: $R \circ S$ is the set of pairs (x, y) such that there is some z with $(x, z) \in R$ and $(z, y) \in S$
- Converse: R^{\sim} is the set of pairs (y, x) such that $(x, y) \in R$

Relations

- Properties of relations
- R is reflexive iff for all $x \in U,(x, x) \in R$
- R is symmetric iff for all $x, y \in U$, if $(x, y) \in R$, then $(y, x) \in R$
- R is transitive iff for all $x, y, z \in U$, if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$

Relations

- Exercises from the book
- Exercise 2.5 What is the composition of $\{(n, n+2) \mid n \in N\}$ with itself?
- Exercise 2.9 Can you give an example of a transitive relation R for which $R \circ R=R$ does not hold?

Functions

- "Functions are relations with the following special property: for any (a, b) and (a, c) in the relation it has to hold that b and c are equal.
- Thus a function from a set A (called domain) to a set B (called range) is a relation between A and B such that for each $a \in A$ there is one and only one associated $b \in B$.
- In other words, a function is a mechanism that maps an input value to a uniquely determined output value."

Functions

- Extensional view of functions: functions as ordered pairs

Kelvin	Celsius	Fahrenheit	
0	-273.15	-459.67	(absolute zero)
273.15	0	32	(freezing point of water)
310.15	37	98.6	(human body temperature)
373.13	99.98	211.96	(boiling point of water)
505.9	232.8	451	(paper auto-ignites)

Functions

- Intensional view of functions: functions as instructions for computation
- Function from Kelvin to Celsius: $x \mapsto x-273.15$
- Function from Celsius to Fahrenheit: $x \mapsto x \times \frac{9}{5}+32$

Functions

- Functions, as relations, can be composed

Functions

- Functions, as relations, can be composed
- Extensional view of function composition: $f \cdot g$ is the set of pairs (x, y) such that there is some z with $(x, z) \in g$ and $(z, y) \in f$
- Warning! This is the reverse order of operations from the definition of relation composition

Functions

- Functions, as relations, can be composed
- Extensional view of function composition: $f \cdot g$ is the set of pairs (x, y) such that there is some z with $(x, z) \in g$ and $(z, y) \in f$
- Warning! This is the reverse order of operations from the definition of relation composition
- Intensional view of function composition: $(f \cdot g)(x)=f(g(x))$
- First apply g to x, then apply f to $g(x)$ (the output of g)
- Right to left, or inside to outside

Functions

- The characteristic function of a set A is the function that maps all elements of A to True and all objects in the universe (or domain) U that are not elements of A to False
- Relations, as sets, can be represented as characteristic functions

Functions

- Exercise from the book
- Exercise 2.10 The successor function $s: \mathbb{N} \rightarrow \mathbb{N}$ on the natural numbers is given by $n \mapsto n+1$. What is the composition of s with itself?

