
Types

Kenneth Lai

Brandeis University

September 12, 2022

Announcements

I Please submit your personal learning goals if you haven’t done
so already!

I For Wednesday
I Read van Eijck and Unger Chapter 4.4, 5.2, and 5.3

I For 9/21
I HW1 due

Today’s Plan

I Lambda Calculus Exercises and Resources

I Types

I Functional Programming with Haskell

I (we’ll see how far we get...)

Today’s Plan

I Lambda Calculus Exercises and Resources

I Types

I Functional Programming with Haskell

I (we’ll see how far we get...)

Exercises

I Exercises from Coppock and Champollion (2022) Chapter 5,
Exercise 3

I For each of the following lambda expressions, apply beta
reduction to give a completely reduced expression (i.e., in beta
normal form):

7. [[λxλy .R(x , y)](b)](a)
8. [λx .[λy .R(x , y)](b)](a)
9. [λX .∃x .[P(x) ∧ X (x)]](λy .R(a, y))

11. [λX .∃x .[P(x) ∧ X (x)]](λy .R(y , x))

Lambda Calculator

I http://lambdacalculator.com/

http://lambdacalculator.com/

Computational Semantics
Day 3: Lambda calculus

and the composition of meanings

Jan van Eijck1 & Christina Unger2

1CWI, Amsterdam, and UiL-OTS, Utrecht, The Netherlands
2CITEC, Bielefeld University, Germany

ESSLLI 2011, Ljubljana

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 1 / 73

Outline Formal definition and properties

Observation

We can build expressions that do not make much sense.

• (+ x λy .(1 2))

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 18 / 73

Outline Typed lambda calculus

Typed lambda calculus

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 19 / 73

Outline Typed lambda calculus

Types

Types are sets of expressions, classifying expressions according to their
combinatorial behavior.

Types

τ ::= e | t | (τ → τ)

Where e (for entities) and t (for truth values) are basic types
and τ → τ are functional types.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 20 / 73

Outline Typed lambda calculus

Typed lambda calculus

Each lambda expression is assigned a type, specified as follows:

• Variables:
For each type τ we have variables for that type.

• Abstraction:
If v :: δ and E :: τ , then λv .E :: δ → τ .

• Application:
If E1 :: δ → τ and E2 :: δ, then (E1 E2) :: τ .

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 21 / 73

Outline Typed lambda calculus

Examples

Of which types are the following expressions? (Assuming that numbers are
of type Int, + and * are of type Int→ Int→ Int.)

• λx .(+ 1 x)

• (λx .(x 2) λy .(∗ y y))

• (λx .(y x) z)

• λz .(z z)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 22 / 73

Computational Semantics
Day 1: Getting Started with Haskell + Inference

Engine for NL

Jan van Eijck1 & Christina Unger2

1CWI, Amsterdam, and UiL-OTS, Utrecht, The Netherlands
2CITEC, Bielefeld University, Germany

ESSLLI 2011, Ljubljana

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 1 / 82

Functional programming with Haskell

A short history of Haskell

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 11 / 82

Functional programming with Haskell

A short history of Haskell

In the 80s, efforts of researchers working on functional programming were
scattered across many languages (Lisp, SASL, Miranda, ML,. . .).

In 1987 a dozen functional programmers decided to meet in order to
reduce unnecessary diversity in functional programming languages by
designing a common language that is

• based on ideas that enjoy a wide consensus

• suitable for further language research as well as applications, including
building large systems

• freely available

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 12 / 82

Functional programming with Haskell

A short history of Haskell

In 1990, they published the first Haskell specification, named after the
logician and mathematician Haskell B. Curry (1900-1982).

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 13 / 82

Functional programming with Haskell

Haskell is functional

A program consists entirely of functions.

• The main program itself is a function with the program’s input as
argument and the program’s output as result.

• Typically the main function is defined in terms of other functions,
which in turn are defined in terms of still more functions, until at the
bottom level the functions are language primitives.

Running a Haskell program consists in evaluating expressions (basically
functions applied to arguments).

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 19 / 82

Functional programming with Haskell

A shift in thinking

Imperative thinking:

• Variables are pointers to storage locations whose value can be
updated all the time.

• You give a sequence of commands telling the computer what to do
step by step.

Examples:

• initialize a variable examplelist of type integer list,
then add 1, then add 2, then add 3

• in order to compute the factorial of n, initialize an integer variable f

as 1, then for all i from 1 to n, set f to f×i

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 20 / 82

Functional programming with Haskell

A shift in thinking

Functional thinking:

• Variables are identifiers for an immutable, persistent value.

• You tell the computer what things are.

Examples:

• examplelist is a list of integers containing the elements
1, 2, and 3

• the factorial of n is the product of all integers from 1 to n

factorial :: Int -> Int

factorial n = product [1..n]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 21 / 82

Functional programming with Haskell

A shift in thinking

Functional thinking:

• Variables are identifiers for an immutable, persistent value.

• You tell the computer what things are.

Examples:

• examplelist is a list of integers containing the elements
1, 2, and 3

• the factorial of n is the product of all integers from 1 to n

factorial :: Int -> Int

factorial n = product [1..n]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 21 / 82

Functional programming with Haskell

A shift in thinking

Stop thinking in variable assignments, sequences and loops.

Start thinking in functions, immutable values and recursion.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 22 / 82

