
Functors and Applicative Functors

Kenneth Lai

Brandeis University

October 19, 2022

Source

http://learnyouahaskell.com/functors-applicative-functors-and-monoids
http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Functors and Applicative Functors

Kenneth Lai

Brandeis University

October 19, 2022

Source

http://learnyouahaskell.com/functors-applicative-functors-and-monoids
http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Announcements

I By 11:59pm tonight
I HW2 due
I Paper Presentation Ideas due

I Don’t worry if you’re still waiting for a group–I’m still
matching people up

I For next Monday
I Read Huth and Ryan Chapter 5.1, 5.2, 3.2

I For 11/2
I HW3 due

I For 11/9
I Final Project Ideas due

I More details next week

Today’s Plan

I Extension and Intension: Two Ideas

I Functors

I Applicative Functors

Extension and Intension

I Idea 1: If the interpretation of something in an extensional
model has type α, then its intensional interpretation has type
s → α, where s is the type of possible worlds (World)

I Introduce abbreviations for types World -> Entity and
World -> Bool

type IEntity = World -> Entity

type IBool = World -> Bool

Extension and Intension

I Idea 1: If the interpretation of something in an extensional
model has type α, then its intensional interpretation has type
s → α, where s is the type of possible worlds (World)
I Introduce abbreviations for types World -> Entity and

World -> Bool

type IEntity = World -> Entity

type IBool = World -> Bool

Extension and Intension

iSnowWhite :: IEntity

iSnowWhite W1 = snowWhite

iSnowWhite W2 = snowWhite’

iSnowWhite W3 = snowWhite’

iGirl, iPrincess, iPerson :: World -> Entity -> Bool

iGirl W1 = girl

iGirl W2 = girl’

iGirl W3 = girl’

iPrincess W1 = princess

iPrincess W2 = princess’

iPrincess W3 = girl’

iPerson W1 = person

iPerson W2 = person’

iPerson W3 = person’

Extension and Intension

iLaugh, iShudder :: World -> Entity -> Bool

iLaugh W1 = laugh

iLaugh W2 = laugh’

iLaugh W3 = laugh’

iShudder W1 = shudder

iShudder W2 = shudder’

iShudder W3 = shudder’

iCatch :: World -> Entity -> Entity -> Bool

iCatch W1 = \ x y -> False

iCatch W2 = \ x y -> False

iCatch W3 = \ x y -> elem x [B,R,T] && girl’ y

Extension and Intension

I Idea 2: If the extensional interpretation of a linguistic
expression has some type, then its intensional interpretation
has the type that replaces all instances of e with s → e
(IEntity) and all instances of t with s → t (IBool)

Extension and Intension

I Some are easier than others...

iSent :: Sent -> IBool

iSent (Sent np vp) = iNP np (iVP vp)

iNP :: NP -> (IEntity -> IBool) -> IBool

iNP SnowWhite = \ p -> p iSnowWhite

iNP (NP1 det cn) = iDET det (iCN cn)

iVP :: VP -> IEntity -> IBool

iVP Laughed = \ x i -> iLaugh i (x i)

iVP Shuddered = \ x i -> iShudder i (x i)

iCN :: CN -> IEntity -> IBool

iCN Girl = \ x i -> iGirl i (x i)

iCN Princess = \ x i -> iPrincess i (x i)

Extension and Intension

I Some are easier than others...

iNP Everyone = \ p i -> all (\x -> p (\j -> x) i)

(filter (\y -> iPerson i y) entities)

iNP Someone = \ p i -> any (\x -> p (\j -> x) i)

(filter (\y -> iPerson i y) entities)

iDET :: DET -> (IEntity -> IBool)

-> (IEntity -> IBool) -> IBool

iDET Some p q = \ i -> any (\x -> q (\j -> x) i)

(filter (\x -> p (\j -> x) i) entities)

iDET Every p q = \ i -> all (\x -> q (\j -> x) i)

(filter (\x -> p (\j -> x) i) entities)

iDET No p q = \ i -> not (any (\x -> q (\j -> x) i)

(filter (\x -> p (\j -> x) i) entities))

Extension and Intension

I There is method to this madness!
I We can express the intensionalization process in terms of

functors, in particular, applicative functors

Computing with Boxes

I I/O types are boxes
I IO a is the type of a function that performs an I/O action and

returns an object of type a in a box

I Lists are boxes
I Learn You a Haskell book: “You can think of a list as a box

that has an infinite amount of little compartments and they
can all be empty, one can be full and the others empty or a
number of them can be full.”

Computing with Boxes

I I/O types are boxes
I IO a is the type of a function that performs an I/O action and

returns an object of type a in a box

I Lists are boxes
I Learn You a Haskell book: “You can think of a list as a box

that has an infinite amount of little compartments and they
can all be empty, one can be full and the others empty or a
number of them can be full.”

Computing with Boxes

I Suppose we have a function of type (a -> b), and (an)
object(s) of type a in a box. How can we apply the function
to the object(s)?

I Lists: map :: (a -> b) -> [a] -> [b]
I “The function map takes a function and a list and returns a list

containing the results of applying the function to the individual
list members.”

Computing with Boxes

I Suppose we have a function of type (a -> b), and (an)
object(s) of type a in a box. How can we apply the function
to the object(s)?

I Lists: map :: (a -> b) -> [a] -> [b]
I “The function map takes a function and a list and returns a list

containing the results of applying the function to the individual
list members.”

Computing with Boxes

I I/O: something like this

iomap :: (a -> b) -> IO a -> IO b

iomap f action = do

result <- action

return (f result)

I Bind the result of action to result

I Apply f to result and put it in a box

Computing with Boxes

I I/O: something like this

iomap :: (a -> b) -> IO a -> IO b

iomap f action = do

result <- action

return (f result)

I Bind the result of action to result

I Apply f to result and put it in a box

Functors

I Functors are boxes

class Functor F where

fmap :: (a -> b) -> F a -> F b

I Functor is a type class that contains types that can be
“mapped” over
I F is a polymorphic type (i.e., type constructor)

instance Functor [] where

fmap = map

instance Functor IO where

fmap f action = do

result <- action

return (f result)

Functors

I Functors are boxes

class Functor F where

fmap :: (a -> b) -> F a -> F b

I Functor is a type class that contains types that can be
“mapped” over
I F is a polymorphic type (i.e., type constructor)

instance Functor [] where

fmap = map

instance Functor IO where

fmap f action = do

result <- action

return (f result)

Functors

I Functors are boxes

class Functor F where

fmap :: (a -> b) -> F a -> F b

I Functor is a type class that contains types that can be
“mapped” over
I F is a polymorphic type (i.e., type constructor)

instance Functor [] where

fmap = map

instance Functor IO where

fmap f action = do

result <- action

return (f result)

Functors

I Functors are boxes

class Functor F where

fmap :: (a -> b) -> F a -> F b

I fmap takes a function (of type a -> b) and a box of a and
outputs a box of b

I Alternatively, fmap takes a function (of type a -> b) and lifts
it to a function over boxes (of type F a -> F b)

Functors

I Functors are boxes

class Functor F where

fmap :: (a -> b) -> F a -> F b

I fmap takes a function (of type a -> b) and a box of a and
outputs a box of b

I Alternatively, fmap takes a function (of type a -> b) and lifts
it to a function over boxes (of type F a -> F b)

Functors

I Functor laws (from the Learn You a Haskell book):
I “All functors are expected to exhibit certain kinds of

functor-like properties and behaviors.
I They should reliably behave as things that can be mapped

over.
I Calling fmap on a functor should just map a function over the

functor, nothing more.

I This behavior is described in the functor laws.”

I Identity: fmap id = id

I Composition: fmap (g . f) = fmap g . fmap f

I That is, functors must preserve identity and composition of
functions
I Haskell will not enforce this for you–you have to do it yourself

Functors

I Functor laws (from the Learn You a Haskell book):
I “All functors are expected to exhibit certain kinds of

functor-like properties and behaviors.
I They should reliably behave as things that can be mapped

over.
I Calling fmap on a functor should just map a function over the

functor, nothing more.

I This behavior is described in the functor laws.”

I Identity: fmap id = id

I Composition: fmap (g . f) = fmap g . fmap f

I That is, functors must preserve identity and composition of
functions
I Haskell will not enforce this for you–you have to do it yourself

Functors

I Functor laws (from the Learn You a Haskell book):
I “All functors are expected to exhibit certain kinds of

functor-like properties and behaviors.
I They should reliably behave as things that can be mapped

over.
I Calling fmap on a functor should just map a function over the

functor, nothing more.

I This behavior is described in the functor laws.”

I Identity: fmap id = id

I Composition: fmap (g . f) = fmap g . fmap f

I That is, functors must preserve identity and composition of
functions
I Haskell will not enforce this for you–you have to do it yourself

Functors

I Functors are boxes
I That implement maps that lift normal functions (of type

a -> b) to functions over boxes (of type F a -> F b)

Functors

I Functors represent context
I That implement maps that lift normal functions (of type

a -> b) to functions of objects in context (of type
F a -> F b)

I IO: input/output
I []: nondeterminism

Functors

I Functors represent context
I That implement maps that lift normal functions (of type

a -> b) to functions of objects in context (of type
F a -> F b)

I IO: input/output
I []: nondeterminism

Lists as Nondeterminism

I We want to add two numbers, but we don’t know what they
are

I All we know is that we have two boxes of numbers, [0,2]
and [1,2]

I We pick a number from the first box and a number from the
second box, and add them

I What are our possible results?

I [0+1,0+2,2+1,2+2] = [1,2,3,4]

Lists as Nondeterminism

I We want to add two numbers, but we don’t know what they
are

I All we know is that we have two boxes of numbers, [0,2]
and [1,2]

I We pick a number from the first box and a number from the
second box, and add them

I What are our possible results?
I [0+1,0+2,2+1,2+2] = [1,2,3,4]

Lists as Nondeterminism

I We have a function of numbers and a box of numbers, let’s
map the function over the list

map (+) [0,2] = [(0+),(2+)]

I Now we have a box of functions
I How can we extract the functions and apply them to the

second box of numbers?

Lists as Nondeterminism

I We have a function of numbers and a box of numbers, let’s
map the function over the list

map (+) [0,2] = [(0+),(2+)]

I Now we have a box of functions
I How can we extract the functions and apply them to the

second box of numbers?

Applicative Functors

class (Functor F) => Applicative F where

pure :: a -> F a

(<*>) :: F (a -> b) -> F a -> F b

I pure takes a value (of type a) and puts it in a box (of type
F a)

I (<*>) takes a box of functions (of type F (a -> b)) and
returns a function of boxes (of type F a -> F b)

Applicative Functors

class (Functor F) => Applicative F where

pure :: a -> F a

(<*>) :: F (a -> b) -> F a -> F b

I pure takes a value (of type a) and puts it in a box (of type
F a)

I (<*>) takes a box of functions (of type F (a -> b)) and
returns a function of boxes (of type F a -> F b)

Applicative Functors

class (Functor F) => Applicative F where

pure :: a -> F a

(<*>) :: F (a -> b) -> F a -> F b

I pure takes a value (of type a) and puts it in a default context
(of type F a)

I (<*>) takes a function in a context (of type F (a -> b)) and
returns a function of objects in context (of type F a -> F b)

Applicative Functors

I Lists are applicative functors

instance Applicative [] where

pure x = [x]

fs <*> xs = [f x | f <- fs, x <- xs]

I pure makes a singleton list

I <*> takes each function f in fs and each argument x in xs,
applies f to x, and puts it in a list

(fmap (+) [0,2]) <*> [1,2] = [1,2,3,4]

I Can also be written
(+) <$> [0,2] <*> [1,2] = [1,2,3,4], where <$> is an
infix version of fmap

Applicative Functors

I Lists are applicative functors

instance Applicative [] where

pure x = [x]

fs <*> xs = [f x | f <- fs, x <- xs]

I pure makes a singleton list

I <*> takes each function f in fs and each argument x in xs,
applies f to x, and puts it in a list

(fmap (+) [0,2]) <*> [1,2] = [1,2,3,4]

I Can also be written
(+) <$> [0,2] <*> [1,2] = [1,2,3,4], where <$> is an
infix version of fmap

Applicative Functors

I Lists are applicative functors

instance Applicative [] where

pure x = [x]

fs <*> xs = [f x | f <- fs, x <- xs]

I pure makes a singleton list

I <*> takes each function f in fs and each argument x in xs,
applies f to x, and puts it in a list

(fmap (+) [0,2]) <*> [1,2] = [1,2,3,4]

I Can also be written
(+) <$> [0,2] <*> [1,2] = [1,2,3,4], where <$> is an
infix version of fmap

Applicative Functors

I I/O types are applicative functors

instance Applicative IO where

pure = return

a <*> b = do

f <- a

x <- b

return (f x)

I pure puts its argument in an IO box

I <*> binds the contents of a and b to f and x respectively,
applies f to x, and puts it in an IO box

Applicative Functors

I I/O types are applicative functors

instance Applicative IO where

pure = return

a <*> b = do

f <- a

x <- b

return (f x)

I pure puts its argument in an IO box

I <*> binds the contents of a and b to f and x respectively,
applies f to x, and puts it in an IO box

Applicative Functors

I Applicative laws:
I Identity: pure id <*> v = v

I Composition: pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

I Homomorphism: pure f <*> pure x = pure (f x)

I Interchange: u <*> pure y = pure ($ y) <*> u

I Bonus: pure f <*> x = fmap f x = f <$> x

Applicative Functors

I Applicative laws:
I Identity: pure id <*> v = v

I Composition: pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

I Homomorphism: pure f <*> pure x = pure (f x)

I Interchange: u <*> pure y = pure ($ y) <*> u

I Bonus: pure f <*> x = fmap f x = f <$> x

Applicative Functors

I Functors are boxes
I That implement maps that lift normal functions (of type

a -> b) to functions over boxes (of type F a -> F b)

I Applicative functors are boxes that support function
application
I If you have a function in a box (F (a -> b)), you can apply it

to a box (F a) to get another box (F b)

Applicative Functors

I Functors are boxes
I That implement maps that lift normal functions (of type

a -> b) to functions over boxes (of type F a -> F b)

I Applicative functors are boxes that support function
application
I If you have a function in a box (F (a -> b)), you can apply it

to a box (F a) to get another box (F b)

Applicative Functors

I Functors represent context
I That implement maps that lift normal functions (of type

a -> b) to functions over context (of type F a -> F b)

I Applicative functors represent contexts that support function
application
I If you have a function in a context (F (a -> b)), you can

apply it to an object in context (F a) to get another object in
context (F b)

Functions as Functors

instance Functor ((->) r) where

fmap f g = (\x -> f (g x))

I (Technically, functions that take arguments of type r are
functors, where r is any type)

I A function of type r -> a can be seen as an object (of type
a) that depends on the context (of type r)
I Can also be seen as a box containing the eventual result of

running the function

I Note that fmap is just function composition
I fmap = (.)

Functions as Functors

instance Functor ((->) r) where

fmap f g = (\x -> f (g x))

I (Technically, functions that take arguments of type r are
functors, where r is any type)

I A function of type r -> a can be seen as an object (of type
a) that depends on the context (of type r)
I Can also be seen as a box containing the eventual result of

running the function

I Note that fmap is just function composition
I fmap = (.)

Functions as Functors

instance Functor ((->) r) where

fmap f g = (\x -> f (g x))

I (Technically, functions that take arguments of type r are
functors, where r is any type)

I A function of type r -> a can be seen as an object (of type
a) that depends on the context (of type r)
I Can also be seen as a box containing the eventual result of

running the function

I Note that fmap is just function composition
I fmap = (.)

Functions as Applicative Functors

instance Applicative ((->) r) where

pure x = (_ -> x)

f <*> g = \x -> f x (g x)

I pure takes a value (of type a) and makes a “default” function
(of type r -> a)
I The most “default” function is the one that, no matter the

argument, always outputs that value

I <*> is a function that
I Takes functions f :: r -> a -> b and g :: r -> a, and

a context x :: r
I Applies both f and g to x (to get (f x) :: a -> b and

(g x) :: a)
I Applies (f x) to (g x) to get a result of type b

I <*> :: (r -> a -> b) -> (r -> a) -> r -> b

Functions as Applicative Functors

instance Applicative ((->) r) where

pure x = (_ -> x)

f <*> g = \x -> f x (g x)

I pure takes a value (of type a) and makes a “default” function
(of type r -> a)
I The most “default” function is the one that, no matter the

argument, always outputs that value

I <*> is a function that
I Takes functions f :: r -> a -> b and g :: r -> a, and

a context x :: r
I Applies both f and g to x (to get (f x) :: a -> b and

(g x) :: a)
I Applies (f x) to (g x) to get a result of type b

I <*> :: (r -> a -> b) -> (r -> a) -> r -> b

Functions as Applicative Functors

instance Applicative ((->) r) where

pure x = (_ -> x)

f <*> g = \x -> f x (g x)

I pure takes a value (of type a) and makes a “default” function
(of type r -> a)
I The most “default” function is the one that, no matter the

argument, always outputs that value

I <*> is a function that
I Takes functions f :: r -> a -> b and g :: r -> a, and

a context x :: r
I Applies both f and g to x (to get (f x) :: a -> b and

(g x) :: a)
I Applies (f x) to (g x) to get a result of type b

I <*> :: (r -> a -> b) -> (r -> a) -> r -> b

