Functors and Applicative Functors

Kenneth Lai

Brandeis University

October 19, 2022

Functors and Applicative Functors

Kenneth Lai

Brandeis University

October 19, 2022

Source

Announcements

- By 11:59pm tonight
- HW2 due
- Paper Presentation Ideas due
- Don't worry if you're still waiting for a group-l'm still matching people up
- For next Monday
- Read Huth and Ryan Chapter 5.1, 5.2, 3.2
- For $11 / 2$
- HW3 due
- For $11 / 9$
- Final Project Ideas due
- More details next week

Today's Plan

- Extension and Intension: Two Ideas
- Functors
- Applicative Functors

Extension and Intension

- Idea 1: If the interpretation of something in an extensional model has type α, then its intensional interpretation has type $s \rightarrow \alpha$, where s is the type of possible worlds (World)

Extension and Intension

- Idea 1: If the interpretation of something in an extensional model has type α, then its intensional interpretation has type $s \rightarrow \alpha$, where s is the type of possible worlds (World)
- Introduce abbreviations for types World -> Entity and World -> Bool
type IEntity = World -> Entity
type IBool = World -> Bool

Extension and Intension

```
iSnowWhite :: IEntity
iSnowWhite W1 = snowWhite
iSnowWhite W2 = snowWhite'
iSnowWhite W3 = snowWhite'
iGirl, iPrincess, iPerson :: World -> Entity -> Bool
iGirl W1 = girl
iGirl W2 = girl'
iGirl W3 = girl'
iPrincess W1 = princess
iPrincess W2 = princess'
iPrincess W3 = girl'
iPerson W1 = person
iPerson W2 = person'
iPerson W3 = person'
```


Extension and Intension

```
iLaugh, iShudder :: World -> Entity -> Bool
iLaugh W1 = laugh
iLaugh W2 = laugh'
iLaugh W3 = laugh'
iShudder W1 = shudder
iShudder W2 = shudder'
iShudder W3 = shudder'
iCatch :: World -> Entity -> Entity -> Bool
iCatch W1 = \ x y -> False
iCatch W2 = \ x y -> False
iCatch W3 = \ x y -> elem x [B,R,T] && girl' y
```


Extension and Intension

- Idea 2: If the extensional interpretation of a linguistic expression has some type, then its intensional interpretation has the type that replaces all instances of e with $s \rightarrow e$ (IEntity) and all instances of t with $s \rightarrow t$ (IBool)

Extension and Intension

- Some are easier than others...

```
iSent :: Sent -> IBool
iSent (Sent np vp) = iNP np (iVP vp)
iNP :: NP -> (IEntity -> IBool) -> IBool
iNP SnowWhite = \ p -> p iSnowWhite
iNP (NP1 det cn) = iDET det (iCN cn)
iVP :: VP -> IEntity -> IBool
iVP Laughed = \ x i -> iLaugh i (x i)
iVP Shuddered = \ x i -> iShudder i (x i)
iCN :: CN -> IEntity -> IBool
iCN Girl = \ x i -> iGirl i (x i)
iCN Princess = \ x i -> iPrincess i (x i)
```


Extension and Intension

- Some are easier than others...

```
iNP Everyone = \ p i -> all (\x -> p (\j -> x) i)
    (filter (\y -> iPerson i y) entities)
iNP Someone = \ p i -> any (\x -> p (\j -> x) i)
    (filter (\y -> iPerson i y) entities)
iDET :: DET -> (IEntity -> IBool)
    -> (IEntity -> IBool) -> IBool
iDET Some p q = \ i -> any (\x -> q (\j -> x) i)
    (filter (\x -> p (\j -> x) i) entities)
iDET Every p q = \ i -> all (\x -> q (\j -> x) i)
    (filter (\x -> p (\j -> x) i) entities)
iDET No p q = \ i >> not (any (\x -> q (\j >> x) i)
    (filter (\x -> p (\j -> x) i) entities))
```


Extension and Intension

- There is method to this madness!
- We can express the intensionalization process in terms of functors, in particular, applicative functors

Computing with Boxes

- I/O types are boxes
- IO a is the type of a function that performs an I/O action and returns an object of type a in a box

Computing with Boxes

- I/O types are boxes
- IO a is the type of a function that performs an I/O action and returns an object of type a in a box
- Lists are boxes
- Learn You a Haskell book: "You can think of a list as a box that has an infinite amount of little compartments and they can all be empty, one can be full and the others empty or a number of them can be full."

Computing with Boxes

- Suppose we have a function of type (a -> b), and (an) object(s) of type a in a box. How can we apply the function to the object(s)?

Computing with Boxes

- Suppose we have a function of type (a -> b), and (an) object(s) of type a in a box. How can we apply the function to the object(s)?
- Lists: map :: (a -> b) -> [a] -> [b]
- "The function map takes a function and a list and returns a list containing the results of applying the function to the individual list members."

Computing with Boxes

- I/O: something like this

```
iomap :: (a -> b) -> IO a -> IO b
iomap f action = do
    result <- action
    return (f result)
```


Computing with Boxes

- I/O: something like this

```
iomap :: (a -> b) -> IO a -> IO b
iomap f action = do
    result <- action
    return (f result)
```

- Bind the result of action to result
- Apply f to result and put it in a box

Functors

- Functors are boxes

class Functor F where

$$
\text { fmap :: (a -> b) -> F a } \rightarrow \text { F b }
$$

Functors

- Functors are boxes
class Functor F where
fmap : : (a -> b) -> F a -> F b
- Functor is a type class that contains types that can be "mapped" over
- F is a polymorphic type (i.e., type constructor)

Functors

- Functors are boxes
class Functor F where
fmap :: (a -> b) -> F a \rightarrow F b
- Functor is a type class that contains types that can be "mapped" over
- F is a polymorphic type (i.e., type constructor)
instance Functor [] where fmap = map
instance Functor IO where
fmap f action $=$ do
result <- action
return (f result)

Functors

- Functors are boxes
class Functor F where
fmap :: (a -> b) -> F a \rightarrow F b
- fmap takes a function (of type a -> b) and a box of a and outputs a box of b

Functors

- Functors are boxes
class Functor F where
fmap :: (a -> b) -> F a \rightarrow F b
- fmap takes a function (of type a -> b) and a box of a and outputs a box of b
- Alternatively, fmap takes a function (of type a -> b) and lifts it to a function over boxes (of type F a \rightarrow F b)

Functors

- Functor laws (from the Learn You a Haskell book):
- "All functors are expected to exhibit certain kinds of functor-like properties and behaviors.
- They should reliably behave as things that can be mapped over.
- Calling fmap on a functor should just map a function over the functor, nothing more.
- This behavior is described in the functor laws."

Functors

- Functor laws (from the Learn You a Haskell book):
- "All functors are expected to exhibit certain kinds of functor-like properties and behaviors.
- They should reliably behave as things that can be mapped over.
- Calling fmap on a functor should just map a function over the functor, nothing more.
- This behavior is described in the functor laws."
- Identity: fmap id = id
- Composition: fmap (g . f) = fmap g . fmap f

Functors

- Functor laws (from the Learn You a Haskell book):
- "All functors are expected to exhibit certain kinds of functor-like properties and behaviors.
- They should reliably behave as things that can be mapped over.
- Calling fmap on a functor should just map a function over the functor, nothing more.
- This behavior is described in the functor laws."
- Identity: fmap id = id
- Composition: fmap (g . f) = fmap g . fmap f
- That is, functors must preserve identity and composition of functions
- Haskell will not enforce this for you-you have to do it yourself

Functors

- Functors are boxes
- That implement maps that lift normal functions (of type a $->$ b) to functions over boxes (of type F a $->$ F b)

Functors

- Functors represent context
- That implement maps that lift normal functions (of type a -> b) to functions of objects in context (of type Fa $->$ F b)

Functors

- Functors represent context
- That implement maps that lift normal functions (of type a \rightarrow b) to functions of objects in context (of type F a \rightarrow F b)
- IO: input/output
- []: nondeterminism

Lists as Nondeterminism

- We want to add two numbers, but we don't know what they are
- All we know is that we have two boxes of numbers, $[0,2]$ and $[1,2]$
- We pick a number from the first box and a number from the second box, and add them
- What are our possible results?

Lists as Nondeterminism

- We want to add two numbers, but we don't know what they are
- All we know is that we have two boxes of numbers, $[0,2]$ and $[1,2]$
- We pick a number from the first box and a number from the second box, and add them
- What are our possible results?
- $[0+1,0+2,2+1,2+2]=[1,2,3,4]$

Lists as Nondeterminism

- We have a function of numbers and a box of numbers, let's map the function over the list

$$
\operatorname{map}(+)[0,2]=[(0+),(2+)]
$$

Lists as Nondeterminism

- We have a function of numbers and a box of numbers, let's map the function over the list
$\operatorname{map}(+)[0,2]=[(0+),(2+)]$
- Now we have a box of functions
- How can we extract the functions and apply them to the second box of numbers?

Applicative Functors

```
class (Functor F) => Applicative F where
pure :: a -> F a
(<*>) :: F (a -> b) -> F a -> F b
```


Applicative Functors

class (Functor F) => Applicative F where pure :: a -> F a (<*>) :: F (a -> b) -> F a -> F b

- pure takes a value (of type a) and puts it in a box (of type F a)
- (<*>) takes a box of functions (of type F (a -> b)) and returns a function of boxes (of type F a -> F b)

Applicative Functors

class (Functor F) => Applicative F where pure : : a -> F a (<*>) :: F (a -> b) -> F a -> F b

- pure takes a value (of type a) and puts it in a default context (of type F a)
- (<*>) takes a function in a context (of type F (a -> b)) and returns a function of objects in context (of type F a -> F b)

Applicative Functors

- Lists are applicative functors
instance Applicative [] where

$$
\begin{aligned}
& \text { pure } x=[x] \\
& \text { fs }<*>\mathrm{xs}=[\mathrm{f} x \mid \mathrm{f}<-\mathrm{fs}, \mathrm{x}<-\mathrm{xs}]
\end{aligned}
$$

Applicative Functors

- Lists are applicative functors
instance Applicative [] where

$$
\begin{aligned}
& \text { pure } x=[x] \\
& \text { fs }<*>\mathrm{xs}=[\mathrm{f} x \mid \mathrm{f}<-\mathrm{fs}, \mathrm{x}<-\mathrm{xs}]
\end{aligned}
$$

- pure makes a singleton list
- <*> takes each function f in $f s$ and each argument x in $x s$, applies f to x, and puts it in a list

Applicative Functors

- Lists are applicative functors
instance Applicative [] where

$$
\begin{aligned}
& \text { pure } x=[x] \\
& \text { fs }<*>\mathrm{xs}=[\mathrm{f} x \mid \mathrm{f}<-\mathrm{fs}, \mathrm{x}<-\mathrm{xs}]
\end{aligned}
$$

- pure makes a singleton list
- <*> takes each function f in $f s$ and each argument x in $x s$, applies f to x, and puts it in a list
(fmap (+) [0,2]) <*> [1,2] = [1, 2, 3,4]
- Can also be written (+) <\$> [0,2] <*> $[1,2]=[1,2,3,4]$, where <\$> is an infix version of fmap

Applicative Functors

- I/O types are applicative functors
instance Applicative IO where
pure = return

$$
\mathrm{a}\langle *\rangle \mathrm{b}=\mathrm{do}
$$

f <- a
x <- b
return (f x)

Applicative Functors

- I/O types are applicative functors
instance Applicative IO where

```
pure = return
```

a <*> b = do
f <- a
$\mathrm{x}<-\mathrm{b}$
return (f x)

- pure puts its argument in an IO box
- <*> binds the contents of a and b to f and x respectively, applies f to x, and puts it in an IO box

Applicative Functors

- Applicative laws:
- Identity: pure id <*> v = v
- Composition: pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
- Homomorphism: pure f <*> pure $\mathrm{x}=$ pure (f x)
- Interchange: u <*> pure y = pure (\$ y) <*> u

Applicative Functors

- Applicative laws:
- Identity: pure id <*> v = v
- Composition: pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
- Homomorphism: pure f <*> pure $\mathrm{x}=$ pure (f x)
- Interchange: u <*> pure y = pure (\$ y) <*> u
- Bonus: pure f <*> $x=$ fmap $f x=f\langle \$\rangle x$

Applicative Functors

- Functors are boxes
- That implement maps that lift normal functions (of type a -> b) to functions over boxes (of type F a -> F b)

Applicative Functors

- Functors are boxes
- That implement maps that lift normal functions (of type a -> b) to functions over boxes (of type F a -> F b)
- Applicative functors are boxes that support function application
- If you have a function in a box (F (a -> b)), you can apply it to a box (F a) to get another box (F b)

Applicative Functors

- Functors represent context
- That implement maps that lift normal functions (of type a $->$ b) to functions over context (of type F a $->$ F b)
- Applicative functors represent contexts that support function application
- If you have a function in a context (F (a -> b)), you can apply it to an object in context (F a) to get another object in context (F b)

Functions as Functors

instance Functor ((->) r) where
fmap $f \mathrm{~g}=(\backslash \mathrm{x}->\mathrm{f}(\mathrm{g} \mathrm{x})$)

- (Technically, functions that take arguments of type r are functors, where r is any type)

Functions as Functors

instance Functor ((->) r) where
fmap $f \mathrm{~g}=(\backslash \mathrm{x}->\mathrm{f}(\mathrm{g} \mathrm{x})$)

- (Technically, functions that take arguments of type r are functors, where r is any type)
- A function of type r-> a can be seen as an object (of type a) that depends on the context (of type r)
- Can also be seen as a box containing the eventual result of running the function

Functions as Functors

instance Functor ((->) r) where
fmap $f \mathrm{~g}=(\backslash \mathrm{x}->\mathrm{f}(\mathrm{g} \mathrm{x})$)

- (Technically, functions that take arguments of type r are functors, where r is any type)
- A function of type r-> a can be seen as an object (of type a) that depends on the context (of type r)
- Can also be seen as a box containing the eventual result of running the function
- Note that fmap is just function composition
- fmap = (.)

Functions as Applicative Functors

instance Applicative ((->) r) where
pure $x=\left(_{-}->x\right)$
f <*> g = \x -> f x (g x)

Functions as Applicative Functors

instance Applicative ((->) r) where
pure $x=\left(_{-}->x\right)$
$\mathrm{f}\langle *\rangle \mathrm{g}=$ \x $\rightarrow \mathrm{f} \mathrm{x}$ (g x)

- pure takes a value (of type a) and makes a "default" function (of typer $->$ a)
- The most "default" function is the one that, no matter the argument, always outputs that value

Functions as Applicative Functors

instance Applicative ((->) r) where
pure $\mathrm{x}=\left(\right.$ _ $^{->} \mathrm{x}$)
$\mathrm{f}\langle *\rangle \mathrm{g}=$ \x $\rightarrow \mathrm{f} \mathrm{x}$ (g x)

- pure takes a value (of type a) and makes a "default" function (of typer $->$ a)
- The most "default" function is the one that, no matter the argument, always outputs that value
- <*> is a function that
\rightarrow Takes functions $f:: r \rightarrow a \rightarrow b$ and $g:: r$ a, and a context x : \quad r
\rightarrow Applies both f and g to x (to get (f x) : : a $->b$ and (g x) :: a)
- Applies (f x) to (g x) to get a result of type b
- <*> :: (r -> a -> b) -> (r -> a) -> r -> b

