
A Model of a Fragment of English

Kenneth Lai

Brandeis University

October 12, 2022

Announcements

I For tomorrow (but can probably wait until next Tuesday)
I Read van Eijck and Unger Chapter 8

I For 10/19
I HW2 due
I Paper Presentation Ideas due

Today’s Plan

I Paper Presentation Ideas: Discourse and Dialogue, and
Multimodal Semantics

I Predicate Logic Exercises

I User-defined Data Types

I A Model of a Fragment of English

Discourse and Dialogue

I AMR for dialogue: Bonial et al. 2020. Dialogue-AMR:
Abstract Meaning Representation for Dialogue. Proceedings
of LREC.

I TalkMoves in the classroom: Suresh et al. 2022. The
TalkMoves Dataset: K-12 Mathematics Lesson Transcripts
Annotated for Teacher and Student Discursive Moves.
Proceedings of LREC.

I Also see SIGDIAL, SemDial venues

https://aclanthology.org/2020.lrec-1.86/
https://aclanthology.org/2020.lrec-1.86/
https://aclanthology.org/2020.lrec-1.86/
https://aclanthology.org/2022.lrec-1.497/
https://aclanthology.org/2022.lrec-1.497/
https://aclanthology.org/2022.lrec-1.497/
https://aclanthology.org/2022.lrec-1.497/
https://aclanthology.org/venues/sigdial/
http://semdial.org/anthology/venues/semdial/

Multimodal Semantics

I Aligning images and text with semantic role labels:
Bhattacharyya et al. 2022. Aligning Images and Text with
Semantic Role Labels for Fine-Grained Cross-Modal
Understanding. Proceedings of LREC.

I Aligning visual and textual vector spaces: Yun, Kim, and
Jung. 2022. Modality Alignment between Deep
Representations for Effective Video-and-Language Learning.
Proceedings of LREC.

I Also see Multimodal Semantic Representations workshop

https://aclanthology.org/2022.lrec-1.528/
https://aclanthology.org/2022.lrec-1.528/
https://aclanthology.org/2022.lrec-1.528/
https://aclanthology.org/2022.lrec-1.295/
https://aclanthology.org/2022.lrec-1.295/
https://aclanthology.org/2022.lrec-1.295/
https://aclanthology.org/2022.lrec-1.295/
https://aclanthology.org/venues/mmsr/

Semantics of Predicate Logic

I Exercise 5.18 Translate the following sentences into predicate
logic, making sure that their truth conditions are captured.
I Someone walks and someone talks.
I No wizard cast a spell or mixed a potion.
I Every balad that is sung by a princess is beautiful.
I If a knight finds a dragon, he fights it.

Semantics of Predicate Logic

I Exercise 5.18 Translate the following sentences into predicate
logic, making sure that their truth conditions are captured.
I Someone walks and someone talks.

I ∃x(Person(x) ∧Walk(x)) ∧ ∃y(Person(y) ∧ Talk(y))

I No wizard cast a spell or mixed a potion.
I ¬∃x(Wizard(x) ∧ (∃y(Spell(y) ∧ Cast(x, y)) ∨ ∃z(Potion(z) ∧ Mix(x, z))))

I Every balad that is sung by a princess is beautiful.
I ∀x((Ballad(x)∧∃y(Princess(y)∧ Sing(y , x))) → Beautiful(x))

I If a knight finds a dragon, he fights it.
I ∀x∀y((Knight(x) ∧ Dragon(y) ∧ Find(x , y)) → Fight(x , y))

Computational Semantics
Day 2: Meaning representations and (predicate) logic

Jan van Eijck1 & Christina Unger2

1CWI, Amsterdam, and UiL-OTS, Utrecht, The Netherlands
2CITEC, Bielefeld University, Germany

ESSLLI 2011, Ljubljana

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 1 / 66

Form and Content

Type definitions

General form:

data type name (type parameters) = constructor1 t11 . . . t1i
| constructor2 t21 . . . t2j
| . . .
| constructorn tn1 . . . tnk

This can be used to create:

• enumeration types

• composite types

• recursive types

• parametric types

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 7 / 66

Form and Content

Example: Enumeration types

data type name (type parameters) = constructor1 t11 . . . t1i
| constructor2 t21 . . . t2j
| . . .
| constructorn tn1 . . . tnk

Examples:

module Day2 where

--data Bool = True | False

data Season = Spring | Summer | Autumn | Winter

data Temperature = Hot | Cold | Moderate

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 8 / 66

Form and Content

Example: Enumeration types

Now, we can define a function using objects of type Season and
Temperature.

weather :: Season -> Temperature

weather Summer = Hot

weather Winter = Cold

weather _ = Moderate

But user-defined types do not automatically have operators for equality,
ordering, show, etc.

> weather Spring

No instance for (Show Temperature)

arising from a use of ‘print’ at <interactive>:1:0-13

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 9 / 66

Form and Content

Example: Enumeration types

Now, we can define a function using objects of type Season and
Temperature.

weather :: Season -> Temperature

weather Summer = Hot

weather Winter = Cold

weather _ = Moderate

But user-defined types do not automatically have operators for equality,
ordering, show, etc.

> weather Spring

No instance for (Show Temperature)

arising from a use of ‘print’ at <interactive>:1:0-13

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 9 / 66

Form and Content

Instance declarations for Show

In order to display user-defined types, we can either define the function
show :: Typename -> String explicitely . . .

instance Show Season where

show Spring = "Spring"

show Summer = "Summer"

show Autumn = "Autumn"

show Winter = "Winter"

. . . or derive it.

data Season = Spring | Summer | Autumn | Winter

deriving Show

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 10 / 66

Form and Content

Instance declarations for Show

In order to display user-defined types, we can either define the function
show :: Typename -> String explicitely . . .

instance Show Season where

show Spring = "Spring"

show Summer = "Summer"

show Autumn = "Autumn"

show Winter = "Winter"

. . . or derive it.

data Season = Spring | Summer | Autumn | Winter

deriving Show

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 10 / 66

Form and Content

Example: Composite types

data type name (type parameters) = constructor1 t11 . . . t1i
| constructor2 t21 . . . t2j
| . . .
| constructorn tn1 . . . tnk

Examples:

data Book = Book Int String [String]

data Color = White | Black | RGB Int Int Int

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 11 / 66

Form and Content

Example: Recursive types

data type name (type parameters) = constructor1 t11 . . . t1i
| constructor2 t21 . . . t2j
| . . .
| constructorn tn1 . . . tnk

Example:

data Tree = Leaf | Branch Tree Tree

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 12 / 66

Form and Content

Example: Polymorphic types

data type name (type parameters) = constructor1 t11 . . . t1i
| constructor2 t21 . . . t2j
| . . .
| constructorn tn1 . . . tnk

Examples:

data Maybe a = Nothing | Just a

data List a = Nil | Cons a (List a)

data Tree a = Leaf a | Branch (Tree a) (Tree a)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 13 / 66

Summary of 9/14 Discussion

Things in model Expression Type

relations verbs String

entities nouns String

? adjectives String

truth values sentences String

I How to represent a model in Haskell?

I Truth values (True, False) are objects of type Bool

Summary of 9/14 Discussion

Things in model Expression Type

relations verbs String

entities nouns String

? adjectives String

truth values sentences String

I How to represent a model in Haskell?

I Truth values (True, False) are objects of type Bool

Summary of 9/14 Discussion

Things in model Expression Type

relations verbs String

entities nouns String

? adjectives String

truth values sentences String

I How to represent a model in Haskell?

I Truth values (True, False) are objects of type Bool

A Model of a Fragment of English

I Declare a data type Entity

data Entity = A | B | C | D | E | F | G

| H | I | J | K | L | M | N

| O | P | Q | R | S | T | U

| V | W | X | Y | Z | Unspec

deriving (Eq,Show,Bounded,Enum)

I We can put all of our entities in a list

entities :: [Entity]

entities = [minBound..maxBound]

A Model of a Fragment of English

I Declare a data type Entity

data Entity = A | B | C | D | E | F | G

| H | I | J | K | L | M | N

| O | P | Q | R | S | T | U

| V | W | X | Y | Z | Unspec

deriving (Eq,Show,Bounded,Enum)

I We can put all of our entities in a list

entities :: [Entity]

entities = [minBound..maxBound]

A Model of a Fragment of English

I Proper names are interpreted as entities

snowWhite, alice, dorothy, goldilocks, littleMook, atreyu

:: Entity

snowWhite = S

alice = A

dorothy = D

goldilocks = G

littleMook = M

atreyu = Y

I Not all nouns are interpreted as entities, though
I Common nouns such as girl and dwarf are more like sets of

entities, or properties of entities (unary relations)

A Model of a Fragment of English

I Proper names are interpreted as entities

snowWhite, alice, dorothy, goldilocks, littleMook, atreyu

:: Entity

snowWhite = S

alice = A

dorothy = D

goldilocks = G

littleMook = M

atreyu = Y

I Not all nouns are interpreted as entities, though
I Common nouns such as girl and dwarf are more like sets of

entities, or properties of entities (unary relations)

