
A Model of a Fragment of English, Part 2

Kenneth Lai

Brandeis University

October 13, 2022

Announcements

I For next Tuesday
I Read van Eijck and Unger Chapter 8

I For next Wednesday
I HW2 due
I Paper Presentation Ideas due

Today’s Plan

I Paper Presentation Idea: Bridging Formal and Distributional
Semantics

I A Model of a Fragment of English

Bridging Formal and Distributional Semantics

I Baroni and Zamparelli. 2010. Nouns are Vectors, Adjectives
are Matrices: Representing Adjective-Noun Constructions in
Semantic Space. Proceedings of EMNLP.

I Socher et al. 2012. Semantic Compositionality through
Recursive Matrix-Vector Spaces. Proceedings of EMNLP.

I Venhuizen et al. 2022. Distributional Formal Semantics.
Information and Computation, 287:104763.

I Also see CL Special Issue on Formal Distributional Semantics
I Also see Bridges and Gaps between Formal and

Computational Linguistics (an ESSLLI 2022 workshop)
I Not a source of papers, but interesting to look at nonetheless

https://aclanthology.org/D10-1115/
https://aclanthology.org/D10-1115/
https://aclanthology.org/D10-1115/
https://aclanthology.org/D12-1110/
https://aclanthology.org/D12-1110/
https://www.sciencedirect.com/science/article/pii/S089054012100078X
https://www.sciencedirect.com/science/article/pii/S089054012100078X
https://aclanthology.org/volumes/J16-4/
https://gdr-lift.loria.fr/bridges-and-gaps-workshop/
https://gdr-lift.loria.fr/bridges-and-gaps-workshop/

Summary of 9/14 Discussion

Things in model Expression Type

relations verbs String

entities nouns String

? adjectives String

truth values sentences String

I How to represent a model in Haskell?

I Truth values (True, False) are objects of type Bool

Summary of 9/14 Discussion

Things in model Expression Type

relations verbs String

entities nouns String

? adjectives String

truth values sentences String

I How to represent a model in Haskell?

I Truth values (True, False) are objects of type Bool

Summary of 9/14 Discussion

Things in model Expression Type

relations verbs String

entities nouns String

? adjectives String

truth values sentences String

I How to represent a model in Haskell?

I Truth values (True, False) are objects of type Bool

A Model of a Fragment of English

I Declare a data type Entity

data Entity = A | B | C | D | E | F | G

| H | I | J | K | L | M | N

| O | P | Q | R | S | T | U

| V | W | X | Y | Z | Unspec

deriving (Eq,Show,Bounded,Enum)

I We can put all of our entities in a list

entities :: [Entity]

entities = [minBound..maxBound]

A Model of a Fragment of English

I Declare a data type Entity

data Entity = A | B | C | D | E | F | G

| H | I | J | K | L | M | N

| O | P | Q | R | S | T | U

| V | W | X | Y | Z | Unspec

deriving (Eq,Show,Bounded,Enum)

I We can put all of our entities in a list

entities :: [Entity]

entities = [minBound..maxBound]

A Model of a Fragment of English

I Proper names are interpreted as entities

snowWhite, alice, dorothy, goldilocks, littleMook, atreyu

:: Entity

snowWhite = S

alice = A

dorothy = D

goldilocks = G

littleMook = M

atreyu = Y

I Not all nouns are interpreted as entities, though
I Common nouns such as girl and dwarf are more like sets of

entities, or properties of entities (unary relations)

A Model of a Fragment of English

I Proper names are interpreted as entities

snowWhite, alice, dorothy, goldilocks, littleMook, atreyu

:: Entity

snowWhite = S

alice = A

dorothy = D

goldilocks = G

littleMook = M

atreyu = Y

I Not all nouns are interpreted as entities, though
I Common nouns such as girl and dwarf are more like sets of

entities, or properties of entities (unary relations)

A Model of a Fragment of English

I Relations are represented as their characteristic functions
I Given some number of entities, does the relation hold between

them?

type OnePlacePred = Entity -> Bool

type TwoPlacePred = Entity -> Entity -> Bool

type ThreePlacePred = Entity -> Entity -> Entity -> Bool

I Convert a list of entities into a function

list2OnePlacePred :: [Entity] -> OnePlacePred

list2OnePlacePred xs = \ x -> elem x xs

A Model of a Fragment of English

I Relations are represented as their characteristic functions
I Given some number of entities, does the relation hold between

them?

type OnePlacePred = Entity -> Bool

type TwoPlacePred = Entity -> Entity -> Bool

type ThreePlacePred = Entity -> Entity -> Entity -> Bool

I Convert a list of entities into a function

list2OnePlacePred :: [Entity] -> OnePlacePred

list2OnePlacePred xs = \ x -> elem x xs

A Model of a Fragment of English

I Common nouns are interpreted as one-place predicates

girl, boy, princess, dwarf, giant, wizard, sword, dagger

:: OnePlacePred

girl = list2OnePlacePred [S,A,D,G]

boy = list2OnePlacePred [M,Y]

princess = list2OnePlacePred [E]

dwarf = list2OnePlacePred [B,R]

giant = list2OnePlacePred [T]

wizard = list2OnePlacePred [W,V]

sword = list2OnePlacePred [F]

dagger = list2OnePlacePred [X]

A Model of a Fragment of English

I Common nouns are interpreted as one-place predicates

child, person, man, woman, male, female, thing

:: OnePlacePred

child = \ x -> (girl x || boy x)

person = \ x -> (child x || princess x || dwarf x

|| giant x || wizard x)

man = \ x -> (dwarf x || giant x || wizard x)

woman = \ x -> princess x

male = \ x -> (man x || boy x)

female = \ x -> (woman x || girl x)

thing = \ x -> not (person x || x == Unspec)

A Model of a Fragment of English

I Intransitive verbs are also interpreted as one-place predicates

laugh, cheer, shudder :: OnePlacePred

laugh = list2OnePlacePred [A,G,E]

cheer = list2OnePlacePred [M,D]

shudder = list2OnePlacePred [S]

A Model of a Fragment of English

I Transitive verbs are interpreted as two-place predicates

love, admire, help, defeat :: TwoPlacePred

love = curry (‘elem‘ [(Y,E),(B,S),(R,S)])

admire = curry (‘elem‘ [(x,G) | x <- entities, person x])

help = curry (‘elem‘ [(W,W),(V,V),(S,B),(D,M)])

defeat = curry (‘elem‘ [(x,y) | x <- entities,

y <- entities,

dwarf x && giant y]

++ [(A,W),(A,V)])

I curry converts a function of a pair of arguments into a
sequence of functions of one argument

curry :: ((a,b) -> c) -> a -> b -> c

curry f x y = f (x,y)

A Model of a Fragment of English

I Transitive verbs are interpreted as two-place predicates

love, admire, help, defeat :: TwoPlacePred

love = curry (‘elem‘ [(Y,E),(B,S),(R,S)])

admire = curry (‘elem‘ [(x,G) | x <- entities, person x])

help = curry (‘elem‘ [(W,W),(V,V),(S,B),(D,M)])

defeat = curry (‘elem‘ [(x,y) | x <- entities,

y <- entities,

dwarf x && giant y]

++ [(A,W),(A,V)])

I curry converts a function of a pair of arguments into a
sequence of functions of one argument

curry :: ((a,b) -> c) -> a -> b -> c

curry f x y = f (x,y)

A Model of a Fragment of English

I Ditransitive verbs are interpreted as three-place predicates

curry3 :: ((a,b,c) -> d) -> a -> b -> c -> d

curry3 f x y z = f (x,y,z)

give :: ThreePlacePred

give = curry3 (‘elem‘ [(T,S,X),(A,E,S)])

A Model of a Fragment of English

Things in model Expression Type

relations verbs String

entities nouns String

? adjectives String

truth values sentences String

A Model of a Fragment of English

Things in model Expression Type

truth values sentences String

entities proper names String

unary relations common nouns String

unary relations intransitive verbs String

binary relations transitive verbs String

ternary relations ditransitive verbs String

? adjectives String

I Exercise What about adjectives? (You can consider
adjectives to be words that combine with common nouns to
form complex noun phrases, e.g., “friendly” + “wizard” =
“friendly wizard”. You do not have to consider predicative
uses of adjectives, e.g., “Snow White is friendly.”.)

A Model of a Fragment of English

Things in model Expression Type

truth values sentences String

entities proper names String

unary relations common nouns String

unary relations intransitive verbs String

binary relations transitive verbs String

ternary relations ditransitive verbs String

? adjectives String

I Exercise What about adjectives? (You can consider
adjectives to be words that combine with common nouns to
form complex noun phrases, e.g., “friendly” + “wizard” =
“friendly wizard”. You do not have to consider predicative
uses of adjectives, e.g., “Snow White is friendly.”.)

A Model of a Fragment of English

Things in model Expression Type

truth values sentences String

entities proper names String

unary relations common nouns String

unary relations intransitive verbs String

binary relations transitive verbs String

ternary relations ditransitive verbs String

? adjectives String

I On one level, everything is (or can be represented as) a
String
I String is not necessarily the most useful type for semantic

interpretation, though

A Model of a Fragment of English

I Principle of Compositionality
I “...the meaning of a complex expression depends on the

meanings of its parts and the way they are combined
syntactically.”

I We want to give structure to our sentences
I These structures will tell us how to combine the meanings of

expressions to get meanings of bigger expressions

A Model of a Fragment of English

I Principle of Compositionality
I “...the meaning of a complex expression depends on the

meanings of its parts and the way they are combined
syntactically.”

I We want to give structure to our sentences
I These structures will tell us how to combine the meanings of

expressions to get meanings of bigger expressions

A Model of a Fragment of English

I Parsing is the process of constructing syntax data structures
from strings of words
I Take LING 120B for more details about these structures, and

COSI 114B for more details about how to create them
I Also see van Eijck and Unger Chapter 9

A Model of a Fragment of English

I In this class, we will assume that these structures are given to
us

Sent

��
��
�

HH
HH

H

NP1

�� HH

Some Dwarf

VP1

��
��

HH
HH

Defeated NP1
�� HH

Some Giant

(Sent (NP1 Some Dwarf)

(VP1 Defeated (NP1 Some Giant)))

A Model of a Fragment of English

I A computational grammar (adapted from FSynF.hs)

data Sent = Sent NP VP deriving Show

data NP = SnowWhite | Alice | Dorothy | Goldilocks

| LittleMook | Atreyu | Everyone | Someone

| NP1 DET CN | NP2 DET RCN

deriving Show

data DET = The | Every | Some | No | Most

deriving Show

data CN = Girl | Boy | Princess | Dwarf | Giant

| Wizard | Sword | Dagger

deriving Show

data RCN = RCN1 CN That VP | RCN2 CN That NP TV

deriving Show

data That = That deriving Show

data VP = Laughed | Cheered | Shuddered

| VP1 TV NP | VP2 DV NP NP

deriving Show

data TV = Loved | Admired | Helped

| Defeated | Caught

deriving Show

data DV = Gave deriving Show

Implementing Semantic Interpretation

I We define an interpretation function for every syntactic
category
I SyntacticCategory -> SomeType

Implementing Semantic Interpretation

I Expressions denoting relations are easiest: they are interpreted
directly as relations in the model

intVP :: VP -> Entity -> Bool

intVP Laughed = \ x -> laugh x

intVP Cheered = \ x -> cheer x

intVP Shuddered = \ x -> shudder x

intTV :: TV -> Entity -> Entity -> Bool

intTV Loved = \ x y -> love x y

intTV Admired = \ x y -> admire x y

intTV Helped = \ x y -> help x y

intTV Defeated = \ x y -> defeat x y

intDV :: DV -> Entity -> Entity -> Entity -> Bool

intDV Gave = \ x y z -> give x y z

Implementing Semantic Interpretation

I Expressions denoting relations are easiest: they are interpreted
directly as relations in the model

intCN :: CN -> Entity -> Bool

intCN Girl = \ x -> girl x

intCN Boy = \ x -> boy x

intCN Princess = \ x -> princess x

intCN Dwarf = \ x -> dwarf x

intCN Giant = \ x -> giant x

intCN Wizard = \ x -> wizard x

intCN Sword = \ x -> sword x

intCN Dagger = \ x -> dagger x

Implementing Semantic Interpretation

I Expressions denoting relations are easiest: they are interpreted
directly as relations in the model

I N.B.: Using eta reduction, we could also have written

intVP Laughed = laugh

intTV Loved = love

intDV Gave = give

intCN Girl = girl

etc.

I Next: interpretation of determiners (quantifiers)

Implementing Semantic Interpretation

I Expressions denoting relations are easiest: they are interpreted
directly as relations in the model

I N.B.: Using eta reduction, we could also have written

intVP Laughed = laugh

intTV Loved = love

intDV Gave = give

intCN Girl = girl

etc.

I Next: interpretation of determiners (quantifiers)

Computational Semantics
Day 3: Lambda calculus

and the composition of meanings

Jan van Eijck1 & Christina Unger2

1CWI, Amsterdam, and UiL-OTS, Utrecht, The Netherlands
2CITEC, Bielefeld University, Germany

ESSLLI 2011, Ljubljana

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 1 / 73

Quantifier denotations

Observation

Quantificational NPs do not refer to particular individuals.

• Every zombie bites someone.

• Nobody has seen a unicorn, because there aren’t any!

Maybe quantifiers indicate the quantity of something (all zombies, the
empty set, and so on). But that’s not exactly right, as it’s not quantities
that get predicated over (it’s not the empty set that has seen a unicorn).

Rather, quantifiers relate sets.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 36 / 73

Quantifier denotations

Examples

[NP Some [N robot]] [VP failed the Turing Test].

N VP

N ∩ VP 6= ∅

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 37 / 73

Quantifier denotations

Examples

[NP Every [N robot]] [VP failed the Turing Test].

N VP

N− VP = ∅

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 38 / 73

Quantifier denotations

Examples

[NP No [N robot]] [VP failed the Turing Test].

N VP

N ∩ VP = ∅

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 39 / 73

Quantifier denotations

Quantifiers as second-order predicates

Quantifiers can be expressed as second-order predicates of type
(e → t)→ (e → t)→ t.

[[some]] = λP λQ. ∃x .(P x) ∧ (Q x)

[[every]] = λP λQ. ∀x .(P x)→ (Q x)

[[no]] = λP λQ. ∀x .(P x)→ ¬(Q x)

λP λQ.¬∃x .(P x) ∧ (Q x)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 40 / 73

Implementing Semantic Interpretation

I Interpretation of determiners as quantifiers in Haskell

intDET :: DET ->

(Entity -> Bool) -> (Entity -> Bool) -> Bool

intDET Some p q = any q (filter p entities)

intDET Every p q = all q (filter p entities)

intDET No p q = not (intDET Some p q)

Implementing Semantic Interpretation

I Interpretation of determiners as quantifiers in Haskell

intDET The p q = singleton plist && q (head plist)

where

plist = filter p entities

singleton [x] = True

singleton _ = False

intDET Most p q = length pqlist > length (plist \\ qlist)

where

plist = filter p entities

qlist = filter q entities

pqlist = filter q plist

Implementing Semantic Interpretation

I Determiner meanings are applied to common noun meanings
to give noun phrase meanings

intNP :: NP -> (Entity -> Bool) -> Bool

intNP (NP1 det cn) = (intDET det) (intCN cn)

I Sentence meanings are noun phrase meanings applied to verb
phrase meanings

intSent :: Sent -> Bool

intSent (Sent np vp) = (intNP np) (intVP vp)

Implementing Semantic Interpretation

I Determiner meanings are applied to common noun meanings
to give noun phrase meanings

intNP :: NP -> (Entity -> Bool) -> Bool

intNP (NP1 det cn) = (intDET det) (intCN cn)

I Sentence meanings are noun phrase meanings applied to verb
phrase meanings

intSent :: Sent -> Bool

intSent (Sent np vp) = (intNP np) (intVP vp)

Quantifier denotations

Example (the easy case)

S
∀x .(wizard x)→ (laugh x) :: t

NP
λQ.∀x .(wizard x)→ (Q x)

:: (e → t)→ t

DET
every

λPλQ.∀x .(P x)→ (Q x)
:: (e → t)→ ((e → t)→ t)

N
wizard

wizard :: e → t

VP
laughed

laugh :: e → t

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 41 / 73

