How does quantifier raising work？Let us compute the meaning of＂loved some princess＂．We have the following meanings：

$$
\begin{aligned}
& \llbracket \mathrm{TV} \rrbracket=\llbracket \text { loved } \rrbracket \quad=\lambda x \lambda y \text {.Love }(x, y) \\
& \llbracket \mathrm{NP} \rrbracket=\llbracket \text { some princess } \rrbracket=\lambda Q \cdot \exists z \cdot \operatorname{Princess}(z) \wedge Q(z)
\end{aligned}
$$

In addition，we define the following rule：

$$
\llbracket \mathrm{VP} \rrbracket=\lambda s \cdot \llbracket \mathrm{NP} \rrbracket(\lambda o \cdot \llbracket \mathrm{TV} \rrbracket(s)(o))
$$

Now we can plug in the meanings of＂loved＂and＂some princess＂for 【TV】 and 【NP】，respectively．For ease of exposition，we will do $\llbracket T V \rrbracket$ first．This just plugs in s and o for x and y in Love (x, y) ，respectively：

$$
\begin{aligned}
\llbracket \mathrm{VP} \rrbracket & =\lambda s \cdot \llbracket \mathrm{NP} \rrbracket(\lambda o \cdot[\lambda x \lambda y \cdot \operatorname{Love}(x, y)](s)(o)) \\
& =\lambda s \cdot \llbracket \mathrm{NP} \rrbracket(\lambda o \cdot[\lambda y \cdot \operatorname{Love}(s, y)](o)) \\
& =\lambda s \cdot \llbracket \mathrm{NP} \rrbracket(\lambda o \cdot \operatorname{Love}(s, o))
\end{aligned}
$$

Now we will do $\llbracket \mathrm{NP} \rrbracket$ ．First we plug in $\lambda o . \operatorname{Love}(s, o)$ for Q ，and then we plug in z for o ：

$$
\begin{aligned}
\llbracket \mathrm{VP} \rrbracket & =\lambda s \cdot[\lambda Q \cdot \exists z \cdot \operatorname{Princess}(z) \wedge Q(z)](\lambda o \cdot \operatorname{Love}(s, o)) \\
& =\lambda s \cdot \exists z \cdot \operatorname{Princess}(z) \wedge[\lambda o \cdot \operatorname{Love}(s, o)](z) \\
& =\lambda s \cdot \exists z \cdot \operatorname{Princess}(z) \wedge \operatorname{Love}(s, z)
\end{aligned}
$$

