Kenneth Lai

Brandeis University

September 28, 2022

Announcements

- ▶ By 11:59pm today
 - ► HW1 due
- ► For next Monday
 - ▶ Read van Eijck and Unger Chapter 4.2, 5.6, 6.3, 7.5, 7.6
 - ▶ Look at Model.hs and TCOM.hs
- ► For 10/19
 - ► HW2 due
 - HW2 will be posted by next Monday
 - Paper Presentation Ideas due

- ► In pairs or small groups, students will read and present a paper of their choice from the computational semantics literature
 - (i.e., groups of 2 or 3)
 - Sometime between 11/16 and 12/5
 - Groups should aim for around 20 minutes for summary and analysis, and around 5 minutes for questions and discussion

- ▶ By 10/19, please prepare a short document (one per group, in PDF format) containing:
 - Names of group members
 - We can help you find a group if needed
 - ▶ 2 (or more) possible papers you would be willing to present

- If you know what you want to want to present, great!
- ▶ If not, that's fine too
 - ► For the next few classes, we will take a few minutes at the beginning of class to discuss possible topics/example papers
 - Suggestions welcome!

- General resources/places to look for papers
 - Conference proceedings
 - Specific to computational semantics: IWCS, *SEM
 - General CL/NLP: ACL, NAACL, EACL, AACL, COLING, LREC, etc. (ACL Anthology)
 - Workshop proceedings
 - Any workshop affiliated with any of the above (especially IWCS or *SEM)
 - Journals
 - ► General CL/NLP: Computational Linguistics, TACL, etc.

Today's Plan

- ▶ Paper Presentation Idea: Computational Lexical Semantics
- Propositional Logic
 - Syntax
 - Semantics
- ► Predicate Logic
 - Syntax
 - Semantics

Today's Plan

- ▶ Paper Presentation Idea: Computational Lexical Semantics
- Propositional Logic
 - Syntax
 - Semantics
- ► Predicate Logic
 - Syntax
 - Semantics
- ▶ (we'll see how far we get...)

Computational Lexical Semantics

A few foundational papers

- ► FrameNet: Charles J. Fillmore, Christopher R. Johnson, and Miriam R.L. Petruck. 2003. Background to FrameNet. International Journal of Lexicography, 16(3):235–250.
- PropBank: Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The Proposition Bank: An Annotated Corpus of Semantic Roles. Computational Linguistics, 31(1):71–106.
- ► Generative Lexicon: James Pustejovsky. 1991. The Generative Lexicon. Computational Linguistics, 17(4):409–441.
- ► WordNet: George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine J. Miller. 1990. Introduction to WordNet: An On-line Lexical Database. International Journal of Lexicography, 3(4):235–244.

Computational Lexical Semantics

- More recent work
 - ► FrameNet: FrameNet Bibliography
 - ► PropBank: PropBank Bibliography
 - Generative Lexicon: International Conference on the Generative Lexicon
 - WordNet: Global WordNet Conference

Things in model	Expression	Type	
relations	verbs	String	
entities	nouns	String	
?	adjectives	String	
?	sentences	String	

Things in model	Expression	Type	
relations	verbs	String	
entities	nouns	String	
?	adjectives	String	
?	sentences	String	

► We want our model to contain entities and relations between them

Things in model	Expression	Туре	
	•		
relations	verbs	String	
entities	nouns	String	
?	adjectives	String	
truth values	sentences	String	

- We want our model to contain entities and relations between them
- Since we are interested in truth conditions, our model should also contain truth values
 - ► These correspond to (declarative) sentences

Things in model	Expression	Туре	
relations	verbs	String	
entities	nouns	String	
?	adjectives	String	
truth values	sentences	String	

- We want our model to contain entities and relations between them
- Since we are interested in truth conditions, our model should also contain truth values
 - ► These correspond to (declarative) sentences
- Propositional logic is the logic of truth values

Things in model	Expression	Туре	
	•		
relations	verbs	String	
entities	nouns	String	
?	adjectives	String	
truth values	sentences	String	

- We want our model to contain entities and relations between them
- Since we are interested in truth conditions, our model should also contain truth values
 - ► These correspond to (declarative) sentences
- Propositional logic is the logic of truth values
- Predicate (or first-order) logic is the logic of entities, relations (or predicates), and truth values

- Atomic propositions
 - ▶ Typically indicated by lower case letters *p*, *q*, *r*, etc., possibly with indices
 - ▶ Represent the meanings of certain declarative sentences
 - Specifically, those that cannot be decomposed into other atomic propositions and logical connectives

- Atomic propositions
 - Typically indicated by lower case letters p, q, r, etc., possibly with indices
 - Represent the meanings of certain declarative sentences
 - Specifically, those that cannot be decomposed into other atomic propositions and logical connectives
 - For example, let:
 - p be "It rains"
 - q be "The sun is shining"
 - r be "There will be a rainbow"

- ► Formulas of propositional logic
 - Atomic propositions are formulas

- Formulas of propositional logic
 - Atomic propositions are formulas
 - ▶ Let *F*₁ and *F*₂ be formulas. Then the following are also formulas:
 - ▶ Negation: $\neg F_1$ ("not F_1 ")
 - **Conjunction**: $(F_1 \wedge F_2)$ (" F_1 and F_2 ")
 - **Disjunction**: $(F_1 \vee F_2)$ (" F_1 or F_2 ")
 - ▶ Implication (or conditional): $(F_1 \rightarrow F_2)$ ("if F_1 then F_2 ")
 - **Equivalence** (or biconditional): $(F_1 \leftrightarrow F_2)$ (" F_1 if and only if F_2 ")

- Formulas of propositional logic
 - Atomic propositions are formulas
 - ▶ Let F_1 and F_2 be formulas. Then the following are also formulas:
 - ▶ Negation: $\neg F_1$ ("not F_1 ")
 - **Conjunction**: $(F_1 \wedge F_2)$ (" F_1 and F_2 ")
 - **Disjunction**: $(F_1 \vee F_2)$ (" F_1 or F_2 ")
 - ▶ Implication (or conditional): $(F_1 \rightarrow F_2)$ ("if F_1 then F_2 ")
 - ▶ Equivalence (or biconditional): $(F_1 \leftrightarrow F_2)$ (" F_1 if and only if F_2 ")
- ▶ For example, the sentence "If it rains and the sun is shining, then there will be a rainbow" can be represented as the propositional formula $(p \land q) \rightarrow r$

Valuations

- Functions from atomic propositions to truth values $\{0,1\}$ (or $\{F,T\}$)
- Equivalently, a valuation can be represented as the set of atomic propositions that are true (in some model)

- ► The truth of an atomic proposition in a model is determined by the valuation in the model
- For other formulas:
 - $ightharpoonup \neg F_1$ is true iff F_1 is false
 - $ightharpoonup F_1 \wedge F_2$ is true iff F_1 is true and F_2 is true
 - ▶ $F_1 \lor F_2$ is true iff F_1 is true or F_2 is true
 - ▶ $F_1 \rightarrow F_2$ is true iff F_1 is false or F_2 is true
 - ▶ $F_1 \leftrightarrow F_2$ is true iff F_1 and F_2 have the same truth value

Another way of presenting the semantics of the propositional connectives is by means of *truth tables*, which specify how the truth value of a complex formula is calculated from the truth values of its components.

$\overline{F_1}$	F_2	$\neg F_1$	$F_1 \wedge F_2$	$F_1 \vee F_2$	$F_1 \rightarrow F_2$	$F_1 \leftrightarrow F_2$
1	1	0	1	1	1	1
1	0	0	0	1	0	0
0	1	1	0	1	1	0
0	0	1	0	0	1	1

- ▶ A formula *F* is:
 - a tautology iff it is true for any valuation
 - ▶ a contradiction iff it is false for any valuation
 - satisfiable iff it is true for at least one valuation
 - contingent iff if is satisfiable but not a tautology

- ▶ A formula *F* is:
 - a tautology iff it is true for any valuation
 - ▶ a contradiction iff it is false for any valuation
 - satisfiable iff it is true for at least one valuation
 - contingent iff if is satisfiable but not a tautology
- ▶ Two formulas F_1 and F_2 are logically equivalent iff they have the same truth value for any valuation
 - $ightharpoonup F_1 \equiv F_2$
- Formulas P_1, \ldots, P_n logically imply formula C (P for premise, C for conclusion) if every valuation which makes every member of P_1, \ldots, P_n true also makes C true."
 - \triangleright $P_1,\ldots,P_n \models C$

- The logical connectives ¬, ∧, ∨, →, ↔ were designed to correspond to the natural language connectives not, and, or, if...then, and if and only if."
 - ► This is not always exact, though

- The logical connectives ¬, ∧, ∨, →, ↔ were designed to correspond to the natural language connectives not, and, or, if...then, and if and only if."
 - ► This is not always exact, though
- ► Exercise 4.9 Translate the following sentences into propositional logic, making sure that their truth conditions are captured. What shortcomings do you encounter?
 - ► The wizard polishes his wand and learns a new spell, or he is lazy.
 - ► The peasant will deal with the devil only if he has a plan to outwit him.
 - ▶ If neither unicorns nor dragons exist, then neither do goblins.

- The logical connectives ¬, ∧, ∨, →, ↔ were designed to correspond to the natural language connectives not, and, or, if...then, and if and only if."
 - This is not always exact, though
- ► Exercise 4.9 Translate the following sentences into propositional logic, making sure that their truth conditions are captured. What shortcomings do you encounter?
 - ► The wizard polishes his wand and learns a new spell, or he is lazy.
 - The peasant will deal with the devil only if he has a plan to outwit him.
 - ▶ If neither unicorns nor dragons exist, then neither do goblins.
 - ▶ (Bonus:) If kangaroos had no tails, [then] they would topple over. (Lewis, 1973)

- **Exercise 4.10** The logical connective \vee is inclusive, i.e. $p \vee q$ is true also if both p and q are true. In natural language, however, or is usually used exclusively, as in
 - You can either have ice cream or candy floss, but not both.

Define a connective \oplus for exclusive *or*, using the already defined connectives.

- **Exercise 4.10** The logical connective \vee is inclusive, i.e. $p \vee q$ is true also if both p and q are true. In natural language, however, or is usually used exclusively, as in
 - ➤ You can either have ice cream or candy floss, but not both. Define a connective ⊕ for exclusive *or*, using the already defined connectives.
 - N.B.: Given only, e.g., ¬ and ∧, or ¬ and ∨, it is possible to define each of the other connectives