Contextualized Word Embeddings

Kenneth Lai

Brandeis University

November 16, 2022

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Contextualized Word Embeddings

Kenneth Lai

Brandeis University

November 16, 2022

Source 1

Source 2 ∢ロト∢母ト∢ミト∢ミト ミー つへで

Contextualized Word Embeddings

Kenneth Lai

Brandeis University

November 16, 2022

Source 1

Source 3 ∢ロ▶∢母▶∢둘▶∢둘▶ 둘 めへで

Announcements

- By 11:59pm today
 - HW4 due
- Paper presentations begin Monday
- Feedback on final project ideas also hopefully by Monday
- No (additional) HW5
 - ▶ Instead, your final project progress report will serve as HW5

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Due 12/7

Paper Presentation Guidelines

- Groups should aim for around 20 minutes for summary and analysis, and around 5 minutes for questions and discussion
- Presentations should cover the following themes
 - Describe the problem, and why it is interesting/important
 - What dimensions of meaning are the authors interested in (e.g., expression meaning vs. speaker meaning, meaning as truth vs. meaning as use, etc.)?
 - How do the authors try to solve the problem?
 - Methods, data, evaluation, etc.
 - What are the results and conclusions?
 - For someone interested in (a) different dimension(s) of meaning than the authors, what lessons can they learn from the paper?

Paper Presentation Guidelines

- Everyone: please attend class in person if you can!
- Presenters: please upload your slides or other materials to LATTE in advance

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Today's Plan

Contextualized Word Embeddings

If time: Issues with large language models

word2vec

- One vector per word type
- Limited (fixed-length) context

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• e.g., ± 2 words, etc.

Polysemy

- One vector per word type
- But words have multiple senses
 - a mouse¹ controlling a computer system in 1968
 - a quiet animal like a mouse²
- Should mouse¹ and mouse² have the same word embedding?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Polysemy

- One vector per word type
- But words have multiple senses
 - ... mouse¹ ... computer ...
 - ... animal ... mouse² ...
- Should mouse¹ and mouse² have the same word embedding?
 - Embeddings of computer and animal wind up closer than they "should" be

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Polysemy

- One vector per word type
- But words have multiple senses
 - ... mouse¹ ... computer ...
 - ... animal ... mouse² ...
- Should mouse¹ and mouse² have the same word embedding?
 - Embeddings of computer and animal wind up closer than they "should" be

- ▶ How can we distinguish between mouse¹ and mouse²?
 - Context!

Word Embeddings

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

h is an embedding of x_i only

How can we embed context information in h?

Word Embeddings

h is an embedding of **x**_i only

How can we embed context information in h?

Recurrent Neural Networks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Neural networks in which the output of a layer in one time step is input to a layer in the next time step

Here, time step = word

Recurrent Neural Networks

RNNs allow for contextualized word embeddings

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Multiple word senses
- Arbitrary-length context

Is this enough?

h_{*i*} encodes the context $\mathbf{x}_1, ..., \mathbf{x}_i$

But mostly \mathbf{x}_i , less \mathbf{x}_{i-1} , even less \mathbf{x}_{i-2} , ..., very little \mathbf{x}_1

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Context is local

- Example: subject-verb agreement
- ► The flights the airline (was/were) cancelling (was/were) full.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Example: subject-verb agreement
- ► The flights the airline was cancelling (was/were) full.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The context for "was" is mostly "airline"

- Example: subject-verb agreement
- ► The flights the airline was cancelling were full.
 - The context for "was" is mostly "airline"
 - The context for "were" is mostly "cancelling", "was", "airline"

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Very little "flights"

Two approaches to handling long-distance dependencies:

Memory-based (e.g. long short-term)

- Attention-based
 - At each time step, the model explicitly computes which other words to pay attention to

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Embeddings from Language Models

 Based on a bidirectional long short-term memory (LSTM) language model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Long Short-Term Memory

Source

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Long Short-Term Memory

Source

- Separate memory (cell) state
 - Reading from and writing to memory controlled by gates
 - Each gate contains one or two neural network layers

- State persists across time
 - May remember information from long ago
- See Christopher Olah's Understanding LSTM Networks for more details!

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

- Input layer: pre-trained word vectors (e.g., from word2vec)
- 2 bidirectional LSTM layers
- Output layer: softmax
- Word embeddings: weighted sum of outputs of input and LSTM layers (task dependent)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1- Concatenate hidden layers Backward Language Model . . 2- Multiply each vector by a weight based on the task X S₂ X S1 X S0 3- Sum the (now weighted) vectors

Embedding of "stick" in "Let's stick to" - Step #2

ELMo embedding of "stick" for this task in this context

Source

イロト 不得 トイヨト イヨト

ж

- Bidirectional Encoder Representations from Transformers
- Based on a transformer ("attention is all you need") model
 - See Jay Alammar's The Illustrated Transformer for more details!

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Attention

Source

Transformers

"Attention Is All You Need" (Vaswani et al., 2017)

- No recurrence, relies entirely on attention (and feedforward layers) to capture global dependencies
 - Recurrent neural networks are inherently sequential, processing one word at a time
 - Transformers are more parallel, looking at the entire sequence at once

- More efficient, especially on GPUs
- Also scores better on many NLP tasks

Input layer: pre-trained word vectors (e.g., from word2vec)

- 12-24 encoder layers
 - Encoder layer = (shared) attention layer + (individual) feedforward layers

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Output layer: 2 pre-training tasks

- Masked LM (Cloze)
 - Mask 15% of input tokens at random, predict masked words

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- NSP (Next Sentence Prediction)
 - ► Given sentences A and B, does B follow A?

Word embeddings: combinations of outputs of encoder layers

For named-entity recognition task CoNLL-2003 NER

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

What is the best contextualized embedding for "Help" in that context?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Recommendations from Strubell et al. (2019)

- "Authors should report training time and sensitivity to hyperparameters."
- "Academic researchers need equitable access to computation resources."

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

"Researchers should prioritize computationally efficient hardware and algorithms."

- Risks of large language models include (but are not limited to) (Bender et al., 2021):
 - Models can reproduce/amplify biases (or even abusive language) found in their training data
 - Bad actors can use generated text for nefarious purposes
 - One can extract personally identifiable information from large language models! (Carlini et al., 2021)

Recommendations from Bender et al. (2021):

- Curate your data for your specific task, rather than ingesting all the data you can find on the internet
- Document your data sources, goals, values, motivations, and potential users/ stakeholders
- Pre-mortems: before development, identify possible failures and ways to avoid them
- Value sensitive design: identify stakeholders, work with them, and make sure your system supports their values