
Continuations and Monads

Kenneth Lai

Brandeis University

October 31, 2022

Source

https://pusheen.com/423-2/
https://pusheen.com/423-2/

Continuations and Monads

Kenneth Lai

Brandeis University

October 31, 2022

Source

https://pusheen.com/423-2/
https://pusheen.com/423-2/

Continuations and Monads

Kenneth Lai

Brandeis University

October 31, 2022

Source

http://ozark.hendrix.edu/~yorgey/misc.html
http://ozark.hendrix.edu/~yorgey/misc.html

Burritos

I Monads are like burritos

I Monads are not like burritos

https://blog.plover.com/prog/burritos.html
https://byorgey.wordpress.com/2009/01/12/abstraction-intuition-and-the-monad-tutorial-fallacy/

Burritos

I Monads are like burritos

I Monads are not like burritos

https://blog.plover.com/prog/burritos.html
https://byorgey.wordpress.com/2009/01/12/abstraction-intuition-and-the-monad-tutorial-fallacy/

Announcements

I For Wednesday
I Read Lipovača Chapter 12
I HW3 due

I For 11/9
I Final Project Idea due

Today’s Plan

I Final Project Idea: Counterfactual Model Generation

I Continuations

I Monads

I (we’ll see how far we get...)

Today’s Plan

I Final Project Idea: Counterfactual Model Generation

I Continuations

I Monads

I (we’ll see how far we get...)

Counterfactual Model Generation

I “If kangaroos had no tails, [then] they would topple over.”

I Given a counterfactual sentence, generate a minimal model
that represents the counterfactual
I Set of worlds, accessibility relation

I Easier: Worlds contain propositions
I Harder: Worlds contain entities and relations

Counterfactual Model Generation

I Some things you could/should do
I Modify the (book’s) parser to accept the counterfactual syntax

I Look at P.hs

I Identify what is being presupposed about the actual world, and
what is asserted about the counterfactual world, and fill in the
worlds appropriately

Counterfactual Model Generation

I Some things to think about
I Interaction with tense and aspect

I “If John had gone to New York, Mary would have seen him.”

I What does the accessibility relation “mean”?
I Actions by one or more agents
I Interventions to make certain facts true

I These will affect how many worlds you generate and how they
are related

Counterfactual Model Generation

I Some things to look at
I van Eijck and Unger Chapter 9
I Peter Menzies and Helen Beebee, “Counterfactual Theories of

Causation”, The Stanford Encyclopedia of Philosophy (Winter
2020 Edition), Edward N. Zalta (ed.)

https://plato.stanford.edu/entries/causation-counterfactual/
https://plato.stanford.edu/entries/causation-counterfactual/
https://plato.stanford.edu/entries/causation-counterfactual/

Meaning as reference

Intensions

When we want to determine the reference of an expression, we have to
consider the context, i.e. reference is not absolute anymore but depends
on the context (time, possible worlds, anaphoric potential,. . .).

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 10 / 52

Two Kinds of Context

I The meaning of an expression is a function of its context

I Extralinguistic context
I Reference depends on time, possible worlds, etc.
I “Alonzo greeted the queen of the Netherlands.”

I Linguistic context
I Reference depends on the rest of the sentence, discourse, etc.
I “John pushed Mary. She fell.”

Two Kinds of Context

I The meaning of an expression is a function of its context
I Extralinguistic context

I Reference depends on time, possible worlds, etc.
I “Alonzo greeted the queen of the Netherlands.”

I Linguistic context
I Reference depends on the rest of the sentence, discourse, etc.
I “John pushed Mary. She fell.”

Two Kinds of Context

I The meaning of an expression is a function of its context
I Extralinguistic context

I Reference depends on time, possible worlds, etc.
I “Alonzo greeted the queen of the Netherlands.”

I Linguistic context
I Reference depends on the rest of the sentence, discourse, etc.
I “John pushed Mary. She fell.”

Continuations

I Suppose we are computing the meaning of “Alice helped
Dorothy”
I Consider the linguistic context of “Alice” to be the rest of the

sentence, “ helped Dorothy”
I λx .Help(x , d)

I “During the meaning computation this slot will be filled with
the individual constant corresponding to Alice.”

I (λx .Help(x , d))(a)

I We can abstract over this context to get a function
I λP.P(a)

Continuations

I Suppose we are computing the meaning of “Alice helped
Dorothy”
I Consider the linguistic context of “Alice” to be the rest of the

sentence, “ helped Dorothy”
I λx .Help(x , d)

I “During the meaning computation this slot will be filled with
the individual constant corresponding to Alice.”

I (λx .Help(x , d))(a)

I We can abstract over this context to get a function
I λP.P(a)

Continuations

I Suppose we are computing the meaning of “Alice helped
Dorothy”
I Consider the linguistic context of “Alice” to be the rest of the

sentence, “ helped Dorothy”
I λx .Help(x , d)

I “During the meaning computation this slot will be filled with
the individual constant corresponding to Alice.”

I (λx .Help(x , d))(a)

I We can abstract over this context to get a function
I λP.P(a)

Continuations

I This is just the meaning of “Alice” as a generalized quantifier!
I “Alice” denotes a function that takes a predicate and hands it

the argument a

I “The treatment of NP denotations as abstractions over NP
contexts was devised by Montague in order to give a unified
treatment of quantificational and non-quantificational NPs.
But we do not need to restrict this strategy to NPs; we can
extend it to expressions of other categories as well.”

Continuations

I This is just the meaning of “Alice” as a generalized quantifier!
I “Alice” denotes a function that takes a predicate and hands it

the argument a

I “The treatment of NP denotations as abstractions over NP
contexts was devised by Montague in order to give a unified
treatment of quantificational and non-quantificational NPs.
But we do not need to restrict this strategy to NPs; we can
extend it to expressions of other categories as well.”

Continuations

I Consider the linguistic context of “helped” to be the rest of
the sentence, “Alice Dorothy”
I λP.P(d)(a)

I We will write d before a, because transitive verbs combine
with their direct objects before their subjects

I During the meaning computation this slot will be filled with
the predicate corresponding to “helped”.
I (λP.P(d)(a))(λyλx .Help(x , y)), or (λP.P(d)(a))(Help)

I Help(d)(a) = Help(a, d)

I We can abstract over this context to get a function
I λP.P(Help)

Continuations

I Consider the linguistic context of “helped” to be the rest of
the sentence, “Alice Dorothy”
I λP.P(d)(a)

I We will write d before a, because transitive verbs combine
with their direct objects before their subjects

I During the meaning computation this slot will be filled with
the predicate corresponding to “helped”.
I (λP.P(d)(a))(λyλx .Help(x , y)), or (λP.P(d)(a))(Help)

I Help(d)(a) = Help(a, d)

I We can abstract over this context to get a function
I λP.P(Help)

Continuations

I Consider the linguistic context of “helped” to be the rest of
the sentence, “Alice Dorothy”
I λP.P(d)(a)

I We will write d before a, because transitive verbs combine
with their direct objects before their subjects

I During the meaning computation this slot will be filled with
the predicate corresponding to “helped”.
I (λP.P(d)(a))(λyλx .Help(x , y)), or (λP.P(d)(a))(Help)

I Help(d)(a) = Help(a, d)

I We can abstract over this context to get a function
I λP.P(Help)

Continuations

I Exercise 11.1 In a similar manner, we can look at the
meaning of helped Dorothy. Its linguistic context is Alice

. Specify the denotation of helped Dorothy and its type
along the above lines, and do the same also for Alice helped.

Continuations

I “We will call the meaning of the linguistic context of an
expression its continuation
I The notion stems from computer science. There continuations

are used for giving a compositional semantics of programs that
exhibit apparent non-compositional side effects like jumps and
exceptions.

I It serves the same purpose we used it for: it captures the
context of an expression and provides it to the computation as
a function.

I The general type of the continuation of an expression of type
τ is a function of type τ → r , with r being the type of result
values.”

I If the linguistic context is the rest of the sentence (or clause,
“next enclosing sentence”), then the result values are
sentence denotations
I r = t

Continuations

I “We will call the meaning of the linguistic context of an
expression its continuation
I The notion stems from computer science. There continuations

are used for giving a compositional semantics of programs that
exhibit apparent non-compositional side effects like jumps and
exceptions.

I It serves the same purpose we used it for: it captures the
context of an expression and provides it to the computation as
a function.

I The general type of the continuation of an expression of type
τ is a function of type τ → r , with r being the type of result
values.”

I If the linguistic context is the rest of the sentence (or clause,
“next enclosing sentence”), then the result values are
sentence denotations
I r = t

Continuations

I “We will call the meaning of the linguistic context of an
expression its continuation
I The notion stems from computer science. There continuations

are used for giving a compositional semantics of programs that
exhibit apparent non-compositional side effects like jumps and
exceptions.

I It serves the same purpose we used it for: it captures the
context of an expression and provides it to the computation as
a function.

I The general type of the continuation of an expression of type
τ is a function of type τ → r , with r being the type of result
values.”

I If the linguistic context is the rest of the sentence (or clause,
“next enclosing sentence”), then the result values are
sentence denotations
I r = t

Continuations

I “We specified the denotation of an expression as a function
from the continuation of that expression to the result type t.
We will call such functions from continuations to result values
computations.”
I The meaning of “Alice” is the computation of “Alice”,

λP.P(a)

I “This computation tells us what role the sub-expression Alice
plays in the whole expression, i.e. what is going to be done
with it when computing the meaning of the whole expression
(in this case it is plugged into a VP-meaning).

I Under this view, a continuation is an instruction of what to do
next.”

Continuations

I “We specified the denotation of an expression as a function
from the continuation of that expression to the result type t.
We will call such functions from continuations to result values
computations.”
I The meaning of “Alice” is the computation of “Alice”,

λP.P(a)
I “This computation tells us what role the sub-expression Alice

plays in the whole expression, i.e. what is going to be done
with it when computing the meaning of the whole expression
(in this case it is plugged into a VP-meaning).

I Under this view, a continuation is an instruction of what to do
next.”

Continuations

I In general, if α is the type of a value, then α→ t is the type
of its continuation, and (α→ t) → t is the type of its
computation

Continuations

I In general, if α is the type of a value, then α→ t is the type
of its continuation, and (α→ t) → t is the type of its
computation

Continuations

I “Now we will turn to systematically lifting the denotation of
expressions from the type they had in Chapter 7 to the type of
a computation.
I The resulting semantics is called continuation passing style

semantics, because during the whole meaning computation we
will keep passing continuations around.

I The lifting is called continuation passing style transformation,
or CPS transformation for short.”

I Like with intensionalization, we can express the CPS
transformation process in terms of functional programming
tools, in this case, monads

Continuations

I “Now we will turn to systematically lifting the denotation of
expressions from the type they had in Chapter 7 to the type of
a computation.
I The resulting semantics is called continuation passing style

semantics, because during the whole meaning computation we
will keep passing continuations around.

I The lifting is called continuation passing style transformation,
or CPS transformation for short.”

I Like with intensionalization, we can express the CPS
transformation process in terms of functional programming
tools, in this case, monads

Monads

class (Applicative M) = > Monad M where

return :: a -> M a

(>>=) :: M a -> (a -> M b) -> M b

(>>) :: M a -> M b -> M b

x >> y = x >>= _ -> y

fail :: String -> M a

fail msg = error msg

I return is just like pure for applicative functors

Monads

class (Applicative M) = > Monad M where

return :: a -> M a

(>>=) :: M a -> (a -> M b) -> M b

(>>) :: M a -> M b -> M b

x >> y = x >>= _ -> y

fail :: String -> M a

fail msg = error msg

I return is just like pure for applicative functors

Monads

I To understand (>>=) (pronounced bind), it may help to think
in terms of its flipped version, (=<<)

(>>=) :: M a -> (a -> M b) -> M b

(=<<) = flip (>>=)

I Let us compare (=<<) with some other functions

(=<<) :: (a -> M b) -> M a -> M b

(<*>) :: F (a -> b) -> F a -> F b

fmap :: (a -> b) -> F a -> F b

I (=<<) (and (>>=)) are maps for monadic functions
I Functions that create their own boxes

Monads

I To understand (>>=) (pronounced bind), it may help to think
in terms of its flipped version, (=<<)

(>>=) :: M a -> (a -> M b) -> M b

(=<<) = flip (>>=)

I Let us compare (=<<) with some other functions

(=<<) :: (a -> M b) -> M a -> M b

(<*>) :: F (a -> b) -> F a -> F b

fmap :: (a -> b) -> F a -> F b

I (=<<) (and (>>=)) are maps for monadic functions
I Functions that create their own boxes

Monads

I To understand (>>=) (pronounced bind), it may help to think
in terms of its flipped version, (=<<)

(>>=) :: M a -> (a -> M b) -> M b

(=<<) = flip (>>=)

I Let us compare (=<<) with some other functions

(=<<) :: (a -> M b) -> M a -> M b

(<*>) :: F (a -> b) -> F a -> F b

fmap :: (a -> b) -> F a -> F b

I (=<<) (and (>>=)) are maps for monadic functions
I Functions that create their own boxes

Monads

I To understand (>>=) (pronounced bind), it may help to think
in terms of its flipped version, (=<<)

(>>=) :: M a -> (a -> M b) -> M b

(=<<) = flip (>>=)

I Let us compare (=<<) with some other functions

(=<<) :: (a -> M b) -> M a -> M b

(<*>) :: F (a -> b) -> F a -> F b

fmap :: (a -> b) -> F a -> F b

I (=<<) (and (>>=)) are maps for monadic functions
I Functions that create their own context

