
We want to compute the meaning of the sentence “Every dwarf loved some
princess”. This sentence has the following syntactic structure:

S

��
��
�

HH
HH

H

NP1

�� HH

D1

Every

N1

dwarf

VP

�
��

H
HH

V

loved

NP2

��
�

HH
H

D2

some

N2

princess

We have the following basic (non-continuized) meanings:

[D1] = [every] = λPλQ.∀x.P (x) → Q(x)

[N1] = [dwarf] = λx.Dwarf(x) (or just Dwarf)

[V] = [loved] = λyλx.Love(x, y) (or just Love)

[D2] = [some] = λPλQ.∃y.P (y) ∧Q(y)

[N2] = [princess] = λx.Princess(x) (or just Princess)

In addition, we define the following functions:

pure(u) = λk.k(u)1

u<*>v = λk.v(λn.u(λm.k(m(n))))2

v>>=u = λc.v(λa.(u(a))(c))

We then have the following continuized grammar:

S → NP VP S = VP<*>NP
VP → V NP VP = V<*>NP
NP → D N NP = N>>=[D]
V → loved V = pure([loved])
N → dwarf N = pure([dwarf])
N → princess N = pure([princess])
D → every [D] = [every]
D → some [D] = [some]

1van Eijck and Unger call this cpsConst; one could also call this return
2van Eijck and Unger call this cpsApply

1



First, we have N2 = pure([princess]) = λk.k(Princess). Then we can compute
NP2 = N2>>=[D2] as follows:

NP2 = some princess = N2>>=[D2]

= λc.N2(λa.([D2](a))(c))

= λc.(λk.k(Princess))(λa.([D2](a))(c))

= λc.(λa.([D2](a))(c))(Princess)

= λc.([D2](Princess))(c)

= λc.((λPλQ.∃y.P (y) ∧Q(y))(Princess))(c)

= λc.(λQ.∃y.Princess(y) ∧Q(y))(c)

= λc.∃y.Princess(y) ∧ c(y)

Then, we have V = pure([loved]) = λn.n(Love). Then we can compute
VP = V<*>NP2 as follows:

VP = loved some princess = V<*>NP2

= λk.NP2(λn.V(λm.k(m(n))))

= λk.(λc.∃y.Princess(y) ∧ c(y))(λn.V(λm.k(m(n))))

= λk.∃y.Princess(y) ∧ (λn.V(λm.k(m(n))))(y)

= λk.∃y.Princess(y) ∧ V(λm.k(m(y)))

= λk.∃y.Princess(y) ∧ (λn.n(Love))(λm.k(m(y)))

= λk.∃y.Princess(y) ∧ (λm.k(m(y)))(Love)

= λk.∃y.Princess(y) ∧ k(Love(y))

Similarly to N2, we have N1 = pure([dwarf]) = λk.k(Dwarf). In the same way,
we can compute NP1 = N1>>=[D1] as follows:

NP1 = every dwarf = N1>>=[D1]

= λc.N1(λa.([D1](a))(c))

= λc.(λk.k(Dwarf))(λa.([D1](a))(c))

= λc.(λa.([D1](a))(c))(Dwarf)

= λc.([D1](Dwarf))(c)

= λc.((λPλQ.∀x.P (x) → Q(x))(Dwarf))(c)

= λc.(λQ.∀x.Dwarf(x) → Q(x))(c)

= λc.∀x.Dwarf(x) → c(x)

2



Finally, we can compute S = VP<*>NP1 as follows:

S = every dwarf loved some princess = VP1<*>NP1

= λk.NP1(λn.VP(λm.k(m(n))))

= λk.(λc.∀x.Dwarf(x) → c(x))(λn.VP(λm.k(m(n))))

= λk.∀x.Dwarf(x) → (λn.VP(λm.k(m(n))))(x)

= λk.∀x.Dwarf(x) → VP(λm.k(m(x)))

= λk.∀x.Dwarf(x) → (λc.∃y.Princess(y) ∧ c(Love(y)))(λm.k(m(x)))

= λk.∀x.Dwarf(x) → ∃y.Princess(y) ∧ (λm.k(m(x)))(Love(y))

= λk.∀x.Dwarf(x) → ∃y.Princess(y) ∧ k((Love(y))(x))

= λk.∀x.Dwarf(x) → ∃y.Princess(y) ∧ k(Love(x, y))

To get the meaning of S, we apply S to the trivial continuation λx.x:

[S] = [every dwarf loved some princess] = S(λx.x)

= (λk.∀x.Dwarf(x) → ∃y.Princess(y) ∧ k(Love(x, y)))(λx.x)

= ∀x.Dwarf(x) → ∃y.Princess(y) ∧ (λx.x)(Love(x, y))

= ∀x.Dwarf(x) → ∃y.Princess(y) ∧ Love(x, y)

Note that with an alternative definition of u<*>’v = λk.u(λm.v(λn.k(m(n))))3,
we can derive the reverse scope. The derivation is left as an exercise for the
reader4.

3van Eijck and Unger call this cpsApply’
4Specifically, Exercise 11.6

3


