We want to compute the meaning of the sentence "Every dwarf loved some princess". This sentence has the following syntactic structure:

We have the following basic (non-continuized) meanings:

$$
\begin{array}{ll}
\llbracket \mathrm{D}_{1} \rrbracket & =\llbracket \text { every } \rrbracket
\end{array}=\lambda P \lambda Q \cdot \forall x \cdot P(x) \rightarrow Q(x)
$$

In addition, we define the following functions:

$$
\begin{aligned}
& \operatorname{pure}(u)=\lambda k \cdot k(u)^{1} \\
& u<*>v=\lambda k \cdot v(\lambda n \cdot u(\lambda m \cdot k(m(n))))^{2} \\
& v \gg=u=\lambda c \cdot v(\lambda a \cdot(u(a))(c))
\end{aligned}
$$

We then have the following continuized grammar:

$S \rightarrow$ NP VP	$\overline{\mathrm{S}}=\overline{\mathrm{VP}}<*>\overline{\mathrm{NP}}$
$\mathrm{VP} \rightarrow$ V NP	$\overline{\mathrm{VP}}=\overline{\mathrm{V}}<*>\overline{\mathrm{NP}}$
$\mathrm{NP} \rightarrow \mathrm{D} \mathrm{N}$	$\overline{\mathrm{NP}}=\overline{\mathrm{N}} \gg=\llbracket \mathrm{D} \rrbracket$
$\mathrm{V} \rightarrow$ loved	$\overline{\mathrm{V}}=$ pure $(\llbracket$ loved $\rrbracket)$
$\mathrm{N} \rightarrow$ dwarf	$\overline{\mathrm{N}}=$ pure $(\llbracket$ dwar $\rrbracket)$
$\mathrm{N} \rightarrow$ princess	$\overline{\mathrm{N}}=$ pure $(\llbracket$ princess $\rrbracket)$
$\mathrm{D} \rightarrow$ every	$\llbracket \mathrm{D} \rrbracket=\llbracket$ every
$\mathrm{D} \rightarrow$ some	$\llbracket \mathrm{D} \rrbracket=\llbracket$ some \rrbracket

[^0]First, we have $\overline{\mathrm{N}_{2}}=\operatorname{pure}(\llbracket$ princess $\rrbracket)=\lambda k \cdot k$ (Princess). Then we can compute $\overline{\mathrm{NP}_{2}}=\overline{\mathrm{N}_{2}} \gg=\llbracket \mathrm{D}_{2} \rrbracket$ as follows:

$$
\begin{aligned}
\overline{\mathrm{NP}_{2}}=\overline{\text { some princess }} & =\overline{\mathrm{N}_{2}} \gg=\llbracket \mathrm{D}_{2} \rrbracket \\
& =\lambda c \cdot \overline{\mathrm{~N}_{2}}\left(\lambda a \cdot\left(\llbracket \mathrm{D}_{2} \rrbracket(a)\right)(c)\right) \\
& =\lambda c \cdot(\lambda k \cdot k(\text { Princess }))\left(\lambda a \cdot\left(\llbracket \mathrm{D}_{2} \rrbracket(a)\right)(c)\right) \\
& =\lambda c \cdot\left(\lambda a \cdot\left(\llbracket \mathrm{D}_{2} \rrbracket(a)\right)(c)\right)(\text { Princess }) \\
& =\lambda c \cdot\left(\llbracket \mathrm{D}_{2} \rrbracket(\text { Princess })\right)(c) \\
& =\lambda c \cdot((\lambda P \lambda Q \cdot \exists y \cdot P(y) \wedge Q(y))(\text { Princess }))(c) \\
& =\lambda c \cdot(\lambda Q \cdot \exists y \cdot \operatorname{Princess}(y) \wedge Q(y))(c) \\
& =\lambda c \cdot \exists y \cdot P r i n c e s s(y) \wedge c(y)
\end{aligned}
$$

Then, we have $\overline{\mathrm{V}}=\operatorname{pure}(\llbracket$ loved $\rrbracket)=\lambda n \cdot n($ Love $)$. Then we can compute $\overline{\mathrm{VP}}=\overline{\mathrm{V}}<*>\overline{\mathrm{NP}_{2}}$ as follows:

$$
\begin{aligned}
\overline{\mathrm{VP}}=\overline{\text { loved some princess }} & =\overline{\mathrm{V}}<*>\overline{\mathrm{NP}_{2}} \\
& =\lambda k \cdot \overline{\mathrm{NP}_{2}}(\lambda n \cdot \overline{\mathrm{~V}}(\lambda m \cdot k(m(n)))) \\
& =\lambda k \cdot(\lambda c \cdot \exists y \cdot \operatorname{Princess}(y) \wedge c(y))(\lambda n \cdot \overline{\mathrm{~V}}(\lambda m \cdot k(m(n)))) \\
& =\lambda k \cdot \exists y \cdot \operatorname{Princess}(y) \wedge(\lambda n \cdot \overline{\mathrm{~V}}(\lambda m \cdot k(m(n))))(y) \\
& =\lambda k \cdot \exists y \cdot \operatorname{Princess}(y) \wedge \overline{\mathrm{V}}(\lambda m \cdot k(m(y))) \\
& =\lambda k \cdot \exists y \cdot \operatorname{Princess}(y) \wedge(\lambda n \cdot n(\operatorname{Love}))(\lambda m \cdot k(m(y))) \\
& =\lambda k \cdot \exists y \cdot \operatorname{Princess}(y) \wedge(\lambda m \cdot k(m(y)))(\operatorname{Love}) \\
& =\lambda k \cdot \exists y \cdot \operatorname{Princess}(y) \wedge k(\operatorname{Love}(y))
\end{aligned}
$$

Similarly to $\overline{\mathrm{N}_{2}}$, we have $\overline{\mathrm{N}_{1}}=\operatorname{pure}(\llbracket$ dwarf $)=\lambda k \cdot k$ (Dwarf). In the same way, we can compute $\overline{\mathrm{NP}_{1}}=\overline{\mathrm{N}_{1}} \gg=\llbracket \mathrm{D}_{1} \rrbracket$ as follows:

$$
\begin{aligned}
\overline{\mathrm{NP}_{1}}=\overline{\text { every dwarf }} & =\overline{\mathrm{N}_{1}} \gg=\llbracket \mathrm{D}_{1} \rrbracket \\
& =\lambda c \cdot \overline{\mathrm{~N}_{1}}\left(\lambda a \cdot\left(\llbracket \mathrm{D}_{1} \rrbracket(a)\right)(c)\right) \\
& =\lambda c \cdot(\lambda k \cdot k(\mathrm{Dwarf}))\left(\lambda a \cdot\left(\llbracket \mathrm{D}_{1} \rrbracket(a)\right)(c)\right) \\
& =\lambda c \cdot\left(\lambda a \cdot\left(\llbracket \mathrm{D}_{1} \rrbracket(a)\right)(c)\right)(\mathrm{Dwarf}) \\
& =\lambda c \cdot\left(\llbracket \mathrm{D}_{1} \rrbracket(\mathrm{Dwarf})\right)(c) \\
& =\lambda c \cdot((\lambda P \lambda Q \cdot \forall x \cdot P(x) \rightarrow Q(x))(\text { Dwarf }))(c) \\
& =\lambda c \cdot(\lambda Q \cdot \forall x \cdot \operatorname{Dwarf}(x) \rightarrow Q(x))(c) \\
& =\lambda c \cdot \forall x \cdot \operatorname{Dwarf}(x) \rightarrow c(x)
\end{aligned}
$$

Finally, we can compute $\overline{\mathrm{S}}=\overline{\mathrm{VP}}<*>\overline{\mathrm{NP}_{1}}$ as follows:

$$
\begin{aligned}
\overline{\mathrm{S}} & =\overline{\mathrm{every} \text { dwarf loved some princess }}=\overline{\mathrm{VP}_{1}}<*>\overline{\mathrm{NP}_{1}} \\
& =\lambda k \cdot \overline{\mathrm{NP}_{1}}(\lambda n \cdot \overline{\mathrm{VP}}(\lambda m \cdot k(m(n)))) \\
& =\lambda k \cdot(\lambda c \cdot \forall x \cdot \operatorname{Dwarf}(x) \rightarrow c(x))(\lambda n \cdot \overline{\mathrm{VP}}(\lambda m \cdot k(m(n)))) \\
& =\lambda k \cdot \forall x \cdot \operatorname{Dwarf}(x) \rightarrow(\lambda n \cdot \overline{\mathrm{VP}}(\lambda m \cdot k(m(n))))(x) \\
& =\lambda k \cdot \forall x \cdot \operatorname{Dwarf}(x) \rightarrow \overline{\mathrm{VP}}(\lambda m \cdot k(m(x))) \\
& =\lambda k \cdot \forall x \cdot \operatorname{Dwarf}(x) \rightarrow(\lambda c \cdot \exists y \cdot \operatorname{Princess}(y) \wedge c(\operatorname{Love}(y)))(\lambda m \cdot k(m(x))) \\
& =\lambda k \cdot \forall x \cdot \operatorname{Dwarf}(x) \rightarrow \exists y \cdot \operatorname{Princess}(y) \wedge(\lambda m \cdot k(m(x)))(\operatorname{Love}(y)) \\
& =\lambda k \cdot \forall x \cdot \operatorname{Dwarf}(x) \rightarrow \exists y \cdot \operatorname{Princess}(y) \wedge k((\operatorname{Love}(y))(x)) \\
& =\lambda k \cdot \forall x \cdot \operatorname{Dwarf}(x) \rightarrow \exists y \cdot \operatorname{Princess}(y) \wedge k(\operatorname{Love}(x, y))
\end{aligned}
$$

To get the meaning of S , we apply $\overline{\mathrm{S}}$ to the trivial continuation $\lambda x . x$:

$$
\begin{aligned}
\llbracket \mathrm{S} \rrbracket & =\llbracket \text { every dwarf loved some princess } \rrbracket=\bar{S}(\lambda x \cdot x) \\
& =(\lambda k \cdot \forall x \cdot \operatorname{Dwarf}(x) \rightarrow \exists y \cdot \operatorname{Princess}(y) \wedge k(\operatorname{Love}(x, y)))(\lambda x \cdot x) \\
& =\forall x \cdot \operatorname{Dwarf}(x) \rightarrow \exists y \cdot \operatorname{Princess}(y) \wedge(\lambda x \cdot x)(\operatorname{Love}(x, y)) \\
& =\forall x \cdot \operatorname{Dwarf}(x) \rightarrow \exists y \cdot \operatorname{Princess}(y) \wedge \operatorname{Love}(x, y)
\end{aligned}
$$

Note that with an alternative definition of $u\left\langle *>{ }^{\prime} v=\lambda k \cdot u(\lambda m \cdot v(\lambda n \cdot k(m(n))))^{3}\right.$, we can derive the reverse scope. The derivation is left as an exercise for the reader ${ }^{4}$.

[^1]
[^0]: ${ }^{1}$ van Eijck and Unger call this cpsConst; one could also call this return
 2^{2} van Eijck and Unger call this cpsApply

[^1]: ${ }^{3}$ van Eijck and Unger call this cpsApply ${ }^{\prime}$
 ${ }^{4}$ Specifically, Exercise 11.6

