Monads and Continuations, Part 2

Kenneth Lai

Brandeis University

November 2, 2022

Monads and Continuations, Part 2

Kenneth Lai

Brandeis University

November 2, 2022

A burrito

Monads and Continuations, Part 2

Kenneth Lai

Brandeis University

November 2, 2022

Announcements

- Please continue to fill out the Mid-course Feedback!
- By 11:59pm today
- HW3 due
- For $11 / 9$
- Final Project Idea due
- For $11 / 16$
- HW4 due

Today's Plan

- Final Project Idea: VP Ellipsis as Anaphora
- Monads
- Continuations in Language

Today's Plan

- Final Project Idea: VP Ellipsis as Anaphora
- Monads
- Continuations in Language
- (we'll see how far we get...)

VP Ellipsis as Anaphora

- "Bill laughed. Mary did too."
- Johnson: "VP ellipsis is the name given to instances of anaphora in which a missing predicate...is able to find an antecedent in the surrounding discourse"
- Bill past [vp laugh]. Mary did [vp \varnothing] too.

VP Ellipsis as Anaphora

- Provide an interpretation of VP ellipsis in the model, and determine if it is satisfied
- Can be very similar to pronoun anaphora; see HW4 for details

VP Ellipsis as Anaphora

- Some things to think about, if you can
- Unsaturated predicates
- "Bill raised his hand. Mary did too."
- Bill $_{i}$ PAST [vp raise i's hand]. Mary ${ }_{i}$ did [vp \varnothing] too.
- (not \#Bill Past [vp raise Bill's hand]. Mary did [vp \varnothing] too.)

VP Ellipsis as Anaphora

- Some things to look at
- Ronnie Cann, Ruth Kempson, and Eleni Gregoromichelaki (2009), Semantics: An Introduction to Meaning in Language, Chapter 7
- Kyle Johnson (2001), "What VP Ellipsis Can Do, and What it Can't, But Not Why", In The Handbook of Contemporary Syntactic Theory, Mark Baltin and Chris Collins (eds.)

Monads

$$
\begin{aligned}
& \text { class (Applicative } M \text {) }=>\text { Monad } M \text { where } \\
& \text { return }:: a \rightarrow M a \\
& (\gg=):: M \text { a } \rightarrow(a->M b) \rightarrow M \text { b } \\
& (\gg):: M a->M b->M b \\
& x \gg y=x ~ \gg=_{-}->y \\
& \text { fail }:: \text { String }->M a \\
& \text { fail msg = error msg }
\end{aligned}
$$

Monads

$$
\begin{aligned}
& \text { class (Applicative M) = > Monad M where } \\
& \text { return :: a -> M a } \\
& \text { (>>=) :: M a -> (a -> M b) -> M b } \\
& \text { (>>) :: M a -> M b -> M b } \\
& \text { x >> y = x >>= _ -> y } \\
& \text { fail :: String -> M a } \\
& \text { fail msg = error msg }
\end{aligned}
$$

- return is just like pure for applicative functors

Monads

- To understand (>>=) (pronounced bind), it may help to think in terms of its flipped version, ($=\ll$)

$$
\begin{aligned}
& (\gg=) \text { : : M a -> (a -> M b) -> M b } \\
& (=\ll)=\text { flip (>>=) }
\end{aligned}
$$

Monads

- To understand (>>=) (pronounced bind), it may help to think in terms of its flipped version, ($=\ll$)

$$
\begin{aligned}
& (\gg=):: \text { M a -> (a -> M b) -> M b } \\
& (=\ll)=\text { flip (>>=) }
\end{aligned}
$$

- Let us compare ($=\ll$) with some other functions

Monads

- To understand (>>=) (pronounced bind), it may help to think in terms of its flipped version, ($=\ll$)

$$
\begin{aligned}
& (\gg=):: \text { M a -> (a -> M b) -> M b } \\
& (=\ll)=\text { flip (>>=) }
\end{aligned}
$$

- Let us compare ($=\ll$) with some other functions

- (=<<) (and (>>=)) are maps for monadic functions
- Functions that create their own boxes

Monads

- To understand (>>=) (pronounced bind), it may help to think in terms of its flipped version, ($=\ll$)

$$
\begin{aligned}
& (\gg=):: \text { M a -> (a -> M b) -> M b } \\
& (=\ll)=\text { flip (>>=) }
\end{aligned}
$$

- Let us compare ($=\ll$) with some other functions

- (=<<) (and (>>=)) are maps for monadic functions
- Functions that create their own context

Monads

- To understand (>>=), it may also help to think in terms of join
join :: (Monad M) => M (M a) \rightarrow M a
- If you have two nested boxes, join, well, "joins" them together

Monads

g >>= f = join (fmap f g) :: M a -> (a -> M b) -> M b

- $\mathrm{f}: \mathrm{a}$-> M b is a monadic function
- fmap f lifts it to type M a $->\mathrm{M}$ (M b)
- g :: M a is a value of type a in a box
- fmap $f \mathrm{~g}:: \mathrm{M}(\mathrm{M} \mathrm{b})$ outputs a value of type b in two nested boxes
- join (fmap f g) extracts a monadic value of type M b from the outermost box

Monads

g >>= f = join (fmap f g) :: M a -> (a -> M b) -> M b

- $\mathrm{f}: \mathrm{a}$ a $->\mathrm{M}$ b is a monadic function
- fmap f lifts it to type M a $->\mathrm{M}$ (M b)
- g :: M a is a value of type a in a box
- fmap $f \mathrm{~g}:$: M (M b) outputs a value of type b in two nested boxes
- join (fmap f g) extracts a monadic value of type M b from the outermost box
- $g \gg=f$ extracts a value of type a from g and feeds it to f to get a monadic value of type M b

Monads

- Examples of monadic functions
- putStrLn :: String -> IO ()
- readFile :: FilePath -> IO String

Monads

- Examples of monadic functions
- putStrLn :: String -> IO ()
- readFile :: FilePath -> IO String
- getLine >>= putStrLn extracts a String from getLine and feeds it to putStrLn
- getLine >>= readFile extracts a FilePath (i.e., String) from getLine and feeds it to readFile, which reads the file and puts its contents in a box

Monads

$$
\begin{aligned}
& \text { class (Applicative } M \text {) }=>\text { Monad } M \text { where } \\
& \text { return }:: a \rightarrow M a \\
& (\gg=):: M \text { a } \rightarrow(a->M b) \rightarrow M \text { b } \\
& (\gg):: M a->M b->M b \\
& x \gg y=x ~ \gg=_{-}->y \\
& \text { fail }:: \text { String }->M \text { a } \\
& \text { fail msg = error msg }
\end{aligned}
$$

- (>>) is shorthand for when we don't need to bind the value inside x to evaluate y

Monads

$$
\begin{aligned}
& \text { class (Applicative M) = > Monad M where } \\
& \text { return :: a -> M a } \\
& \text { (>>=) :: M a -> (a -> M b) -> M b } \\
& \text { (>>) :: M a -> M b -> M b } \\
& \text { x >> y = x >>= _ -> y } \\
& \text { fail :: String -> M a } \\
& \text { fail msg = error msg }
\end{aligned}
$$

- (>>) is shorthand for when we don't need to bind the value inside x to evaluate y
- fail is an error handler for pattern matching in do expressions

$$
\begin{array}{ll}
\text { do }\{f\} & =f \\
\text { do }\{g ; f\} & =g \gg \text { do }\{f\} \\
\text { do }\{x<-g ; f\} & =g \gg=\backslash x->\text { do }\{f\}
\end{array}
$$

do notation

$$
\begin{aligned}
\text { action } & =\text { getLine } \gg=\text { putStrLn } \\
& =\text { getLine } \gg=\backslash x \rightarrow \text { putStrLn } x \\
& =\text { getLine } \gg=\backslash x \rightarrow \text { do \{putStrLn } x\}
\end{aligned}
$$

do notation

```
action = getLine >>= putStrLn
    = getLine >>= \ x >> putStrLn x
    = getLine >>= \ x -> do {putStrLn x}
action = do
    x <- getLine
    putStrLn x
```


Monads

- Lists are monads
instance Monad [] where

$$
\begin{aligned}
& \text { return } x=[x] \\
& \text { xs >>= } f=\text { concat (map } f \text { xs) } \\
& \text { fail _ }=[]
\end{aligned}
$$

Monads

- Lists are monads
instance Monad [] where
return $\mathrm{x}=$ [x]
xs >>= f = concat (map f xs)
fail _ = []
- return makes a singleton list
- fail makes the empty list
- What about (>>=)?

Monads

$$
\begin{aligned}
{[1,2,3,4]==} & {[0,2] \gg=\backslash \mathrm{a}->} \\
& {[1,2] \gg=\backslash \mathrm{b}->} \\
& \text { return }(\mathrm{a}+\mathrm{b})
\end{aligned}
$$

Monads

$$
\begin{aligned}
{[1,2,3,4]==} & {[0,2] \gg=\backslash a \rightarrow>} \\
& {[1,2] \gg=\backslash \mathrm{b} \rightarrow>} \\
& \text { return }(\mathrm{a}+\mathrm{b}) \\
== & {[0,2] \gg=\backslash \mathrm{a} \rightarrow>} \\
& {[1,2] \gg=\backslash \mathrm{b} \rightarrow>} \\
& {[a+b] } \\
== & {[0,2] \gg=\backslash a \rightarrow>} \\
& \text { concat (map }(\backslash \mathrm{b} \rightarrow[\mathrm{a}+\mathrm{b}])[1,2]) \\
== & {[0,2] \gg=\backslash \mathrm{a} \rightarrow>} \\
& \text { concat }[[a+1],[a+2]] \\
= & {[0,2] \gg=\backslash a->} \\
& {[a+1, a+2] }
\end{aligned}
$$

Monads

$$
\begin{aligned}
{[1,2,3,4] } & =[0,2] \gg=\backslash a->[a+1, a+2] \\
& =\text { concat (map }(\backslash a->[a+1, a+2])[0,2]) \\
& =\text { concat }[[0+1,0+2],[2+1,2+2]] \\
& =[1,2,3,4]
\end{aligned}
$$

Monads

$$
\begin{aligned}
{[1,2,3,4]==} & {[0,2] \gg=\backslash \mathrm{a}->} \\
& {[1,2] \gg=\backslash \mathrm{b}->} \\
& \text { return }(\mathrm{a}+\mathrm{b})
\end{aligned}
$$

Monads

$$
\begin{aligned}
{[1,2,3,4]==} & {[0,2] \gg=\backslash \mathrm{a}->} \\
& {[1,2] \gg=\backslash \mathrm{b}->} \\
& \text { return }(\mathrm{a}+\mathrm{b}) \\
== & \text { do } \\
& \mathrm{a}<-[0,2] \\
& \mathrm{b}<-[1,2] \\
& \text { return }(\mathrm{a}+\mathrm{b})
\end{aligned}
$$

Monads

$$
\begin{aligned}
{[1,2,3,4]==} & {[0,2] \gg=\backslash a->} \\
& {[1,2] \gg=\backslash \mathrm{b}->} \\
& \text { return }(\mathrm{a}+\mathrm{b}) \\
== & \text { do } \\
& \mathrm{a}<-[0,2] \\
& \mathrm{b}<-[1,2] \\
& \text { return }(\mathrm{a}+\mathrm{b}) \\
== & {[\mathrm{a}+\mathrm{b} \mid} \\
& \mathrm{a}<-[0,2] \\
& \mathrm{b}<-[1,2]]
\end{aligned}
$$

- List comprehensions are syntactic sugar for monadic computations!

Monads

- Monad laws:
- Left Identity: return $x \gg=f=f x$
- Right Identity: m >>= return $=m$
- Associativity: (m >>= f) >>= g = m >>= ($\backslash \mathrm{x}$-> f $\mathrm{x} \gg=\mathrm{g}$)

Monads

- Functors are boxes
- That implement maps that lift normal functions (of type a -> b) to functions over boxes (of type F a -> F b)
- Applicative functors are boxes that support function application
- If you have a function in a box (F (a -> b)), you can apply it to a box (F a) to get another box (F b)

Monads

- Functors are boxes
- That implement maps that lift normal functions (of type a -> b) to functions over boxes (of type F a -> F b)
- Applicative functors are boxes that support function application
- If you have a function in a box (F (a -> b)), you can apply it to a box (F a) to get another box (F b)
- Monads are boxes that support functions that create their own boxes
- If you have a monadic function (a -> M b), you can apply it to a value (a) in a box (M a) to get another box (M b)

Monads

- Functors represent context
- That implement maps that lift normal functions (of type a -> b) to functions over context (of type F a -> F b)
- Applicative functors represent contexts that support function application
- If you have a function in a context (F (a -> b)), you can apply it to an object in context (F a) to get another object in context (F b)
- Monads represent contexts that support functions that create their own contexts
- If you have a monadic function (a $->\mathrm{M}$ b), you can apply it to a value (a) in a context (M a) to get another context (M b)

Monads

- Functors represent context
- That implement maps that lift normal functions (of type a -> b) to functions over context (of type F a -> F b)
- Applicative functors represent contexts that support function application
- If you have a function in a context (F (a -> b)), you can apply it to an object in context (F a) to get another object in context ($\mathrm{F} \quad \mathrm{b}$)
- Monads represent contexts that can be joined together
- If you have a context in another context (M (M a)), you can join the two contexts into one (M a)

Continuations in Language

- First, let us define some type synonyms
- Note that type Comp a r = (a -> r) -> r
type Cont a r = a -> r
type Comp a r = Cont a r \rightarrow r

Continuations in Language

- What are these functions?
cpsConst :: a -> Comp a r cpsConst c $=\backslash \mathrm{k}$-> k c
cpsApply :: Comp (a -> b) r \rightarrow Comp a r \rightarrow Comp b r cpsApply m n = \k $->\mathrm{n}(\backslash \mathrm{b}->\mathrm{m}(\backslash \mathrm{a}->\mathrm{k}(\mathrm{a} \mathrm{b})))$

Continuations in Language

- What are these functions?
cpsConst : : a -> Comp a r cpsConst c $=\backslash \mathrm{k}->\mathrm{k} \mathrm{c}$
cpsApply :: Comp (a -> b) r $->$ Comp a r \rightarrow Comp b r cpsApply m n = \k $->\mathrm{n}(\backslash \mathrm{b} \rightarrow \mathrm{m}(\backslash \mathrm{a}->\mathrm{k}(\mathrm{a} \mathrm{b}))$)
- Let (Comp - r) be an applicative functor
- cpsConst = pure
- cpsApply = (<*>)

Continuations in Language

- We use cpsConst to lift values to computations

```
intNP_CPS :: NP -> Comp Entity Bool
intNP_CPS SnowWhite = cpsConst snowWhite
intVP_CPS :: VP -> Comp (Entity -> Bool) Bool
intVP_CPS Laughed = cpsConst laugh
intTV_CPS :: TV -> Comp (Entity -> Entity -> Bool) Bool
intTV_CPS Loved = cpsConst love
intCN_CPS :: CN -> Comp (Entity -> Bool) Bool
intCN_CPS Girl = cpsConst girl
```


Continuations in Language

- We use cpsApply to do function application within computations

```
intSent_CPS :: Sent -> Comp Bool Bool
intSent_CPS (Sent np vp) =
    cpsApply (intVP_CPS vp) (intNP_CPS np)
intVP_CPS (VP1 tv np) =
    cpsApply (intTV_CPS tv) (intNP_CPS np)
```


Continuations in Language

- We use cpsApply to do function application within computations
intSent_CPS :: Sent -> Comp Bool Bool
intSent_CPS (Sent np vp) = cpsApply (intVP_CPS vp) (intNP_CPS np)
intVP_CPS (VP1 tv np) = cpsApply (intTV_CPS tv) (intNP_CPS np)
- So far, so good!
- No monads yet, though...

Continuations in Language

- van Eijck and Unger define special continuized determiner interpretations

Continuations in Language

- We don't need them, though!
- We will use our determiner interpretations from before

```
intDET :: DET ->
    (Entity -> Bool) -> (Entity -> Bool) -> Bool
intDET Some p q = any q (filter p entities)
intDET Every p q = all q (filter p entities)
intDET The p q = singleton plist && q (head plist)
        where
        plist = filter p entities
        singleton [x] = True
        singleton _ = False
intDET No p q = not (intDET Some p q)
```


Continuations in Language

- Note that
(Entity -> Bool) -> (Entity -> Bool) -> Bool = (Entity -> Bool) -> Comp Entity Bool
- Determiner interpretations are monadic functions!

Continuations in Language

- Note that (Entity -> Bool) -> (Entity -> Bool) -> Bool = (Entity -> Bool) -> Comp Entity Bool
- Determiner interpretations are monadic functions!

```
cpsBind :: Comp a r -> (a -> Comp b r) -> Comp b r
cpsBind x y = \ k -> x (\ a -> (y a) k)
```

- Let (Comp _ r) be a monad
- cpsBind = (>>=)

Continuations in Language

- Note that (Entity -> Bool) -> (Entity -> Bool) -> Bool = (Entity -> Bool) -> Comp Entity Bool
- Determiner interpretations are monadic functions!

```
cpsBind :: Comp a r -> (a -> Comp b r) -> Comp b r
cpsBind x y = \ k -> x (\ a -> (y a) k)
    - Let (Comp _ r) be a monad
    - cpsBind = (>>=)
intNP_CPS (NP1 det cn)
    = cpsBind (intCN_CPS cn) (intDET det)
```


Continuations in Language

compSent s = intSent_CPS s id

- "We interpret sentences using the function intSent_CPS.
- The result of that function is a sentence computation, i.e. a function of type (Bool -> Bool) -> Bool, that takes a sentence continuation (representing the linguistic context of the sentence) and returns a result value of type Bool.
- An example of a possible sentence continuation is negation: if we had a negated sentence, we could apply the computation of the unnegated sentence to the negation function neg.
- But here we do not want to bother about the linguistic context of sentences and instead want the sentence computation to return a result value of type Bool.
- Therefore we apply the sentence computation to the trivial continuation, the identity function id."

