
Monads and Continuations, Part 2

Kenneth Lai

Brandeis University

November 2, 2022

Source

https://pusheen.com/423-2/
https://pusheen.com/423-2/

Monads and Continuations, Part 2

Kenneth Lai

Brandeis University

November 2, 2022

Source

https://pusheen.com/423-2/
https://pusheen.com/423-2/

Monads and Continuations, Part 2

Kenneth Lai

Brandeis University

November 2, 2022

Source

http://ozark.hendrix.edu/~yorgey/misc.html
http://ozark.hendrix.edu/~yorgey/misc.html

Announcements

I Please continue to fill out the Mid-course Feedback!
I By 11:59pm today

I HW3 due

I For 11/9
I Final Project Idea due

I For 11/16
I HW4 due

Today’s Plan

I Final Project Idea: VP Ellipsis as Anaphora

I Monads

I Continuations in Language

I (we’ll see how far we get...)

Today’s Plan

I Final Project Idea: VP Ellipsis as Anaphora

I Monads

I Continuations in Language

I (we’ll see how far we get...)

VP Ellipsis as Anaphora

I “Bill laughed. Mary did too.”

I Johnson: “VP ellipsis is the name given to instances of
anaphora in which a missing predicate...is able to find an
antecedent in the surrounding discourse”

I Bill past [VP laugh]. Mary did [VP ∅] too.

VP Ellipsis as Anaphora

I Provide an interpretation of VP ellipsis in the model, and
determine if it is satisfied
I Can be very similar to pronoun anaphora; see HW4 for details

VP Ellipsis as Anaphora

I Some things to think about, if you can
I Unsaturated predicates

I “Bill raised his hand. Mary did too.”

I Billi past [VP raise i’s hand]. Maryi did [VP ∅] too.
I (not #Bill past [VP raise Bill’s hand]. Mary did [VP ∅] too.)

VP Ellipsis as Anaphora

I Some things to look at
I Ronnie Cann, Ruth Kempson, and Eleni Gregoromichelaki

(2009), Semantics: An Introduction to Meaning in Language,
Chapter 7

I Kyle Johnson (2001), “What VP Ellipsis Can Do, and What it
Can’t, But Not Why”, In The Handbook of Contemporary
Syntactic Theory, Mark Baltin and Chris Collins (eds.)

https://onlinelibrary.wiley.com/doi/epdf/10.1002/9780470756416.ch14
https://onlinelibrary.wiley.com/doi/epdf/10.1002/9780470756416.ch14
https://onlinelibrary.wiley.com/doi/epdf/10.1002/9780470756416.ch14

Monads

class (Applicative M) = > Monad M where

return :: a -> M a

(>>=) :: M a -> (a -> M b) -> M b

(>>) :: M a -> M b -> M b

x >> y = x >>= _ -> y

fail :: String -> M a

fail msg = error msg

I return is just like pure for applicative functors

Monads

class (Applicative M) = > Monad M where

return :: a -> M a

(>>=) :: M a -> (a -> M b) -> M b

(>>) :: M a -> M b -> M b

x >> y = x >>= _ -> y

fail :: String -> M a

fail msg = error msg

I return is just like pure for applicative functors

Monads

I To understand (>>=) (pronounced bind), it may help to think
in terms of its flipped version, (=<<)

(>>=) :: M a -> (a -> M b) -> M b

(=<<) = flip (>>=)

I Let us compare (=<<) with some other functions

(=<<) :: (a -> M b) -> M a -> M b

(<*>) :: F (a -> b) -> F a -> F b

fmap :: (a -> b) -> F a -> F b

I (=<<) (and (>>=)) are maps for monadic functions
I Functions that create their own boxes

Monads

I To understand (>>=) (pronounced bind), it may help to think
in terms of its flipped version, (=<<)

(>>=) :: M a -> (a -> M b) -> M b

(=<<) = flip (>>=)

I Let us compare (=<<) with some other functions

(=<<) :: (a -> M b) -> M a -> M b

(<*>) :: F (a -> b) -> F a -> F b

fmap :: (a -> b) -> F a -> F b

I (=<<) (and (>>=)) are maps for monadic functions
I Functions that create their own boxes

Monads

I To understand (>>=) (pronounced bind), it may help to think
in terms of its flipped version, (=<<)

(>>=) :: M a -> (a -> M b) -> M b

(=<<) = flip (>>=)

I Let us compare (=<<) with some other functions

(=<<) :: (a -> M b) -> M a -> M b

(<*>) :: F (a -> b) -> F a -> F b

fmap :: (a -> b) -> F a -> F b

I (=<<) (and (>>=)) are maps for monadic functions
I Functions that create their own boxes

Monads

I To understand (>>=) (pronounced bind), it may help to think
in terms of its flipped version, (=<<)

(>>=) :: M a -> (a -> M b) -> M b

(=<<) = flip (>>=)

I Let us compare (=<<) with some other functions

(=<<) :: (a -> M b) -> M a -> M b

(<*>) :: F (a -> b) -> F a -> F b

fmap :: (a -> b) -> F a -> F b

I (=<<) (and (>>=)) are maps for monadic functions
I Functions that create their own context

Monads

I To understand (>>=), it may also help to think in terms of
join

join :: (Monad M) => M (M a) -> M a

I If you have two nested boxes, join, well, “joins” them
together

Monads

g >>= f = join (fmap f g) :: M a -> (a -> M b) -> M b

I f :: a -> M b is a monadic function

I fmap f lifts it to type M a -> M (M b)

I g :: M a is a value of type a in a box

I fmap f g :: M (M b) outputs a value of type b in two
nested boxes

I join (fmap f g) extracts a monadic value of type M b from
the outermost box

I g >>= f extracts a value of type a from g and feeds it to f to
get a monadic value of type M b

Monads

g >>= f = join (fmap f g) :: M a -> (a -> M b) -> M b

I f :: a -> M b is a monadic function

I fmap f lifts it to type M a -> M (M b)

I g :: M a is a value of type a in a box

I fmap f g :: M (M b) outputs a value of type b in two
nested boxes

I join (fmap f g) extracts a monadic value of type M b from
the outermost box

I g >>= f extracts a value of type a from g and feeds it to f to
get a monadic value of type M b

Monads

I Examples of monadic functions
I putStrLn :: String -> IO ()
I readFile :: FilePath -> IO String

I getLine >>= putStrLn extracts a String from getLine

and feeds it to putStrLn

I getLine >>= readFile extracts a FilePath (i.e., String)
from getLine and feeds it to readFile, which reads the file
and puts its contents in a box

Monads

I Examples of monadic functions
I putStrLn :: String -> IO ()
I readFile :: FilePath -> IO String

I getLine >>= putStrLn extracts a String from getLine

and feeds it to putStrLn

I getLine >>= readFile extracts a FilePath (i.e., String)
from getLine and feeds it to readFile, which reads the file
and puts its contents in a box

Monads

class (Applicative M) = > Monad M where

return :: a -> M a

(>>=) :: M a -> (a -> M b) -> M b

(>>) :: M a -> M b -> M b

x >> y = x >>= _ -> y

fail :: String -> M a

fail msg = error msg

I (>>) is shorthand for when we don’t need to bind the value
inside x to evaluate y

I fail is an error handler for pattern matching in do expressions

Monads

class (Applicative M) = > Monad M where

return :: a -> M a

(>>=) :: M a -> (a -> M b) -> M b

(>>) :: M a -> M b -> M b

x >> y = x >>= _ -> y

fail :: String -> M a

fail msg = error msg

I (>>) is shorthand for when we don’t need to bind the value
inside x to evaluate y

I fail is an error handler for pattern matching in do expressions

do notation

do {f} = f

do {g; f} = g >> do {f}

do {x <- g; f} = g >>= \ x -> do {f}

do notation

action = getLine >>= putStrLn

= getLine >>= \ x -> putStrLn x

= getLine >>= \ x -> do {putStrLn x}

action = do

x <- getLine

putStrLn x

do notation

action = getLine >>= putStrLn

= getLine >>= \ x -> putStrLn x

= getLine >>= \ x -> do {putStrLn x}

action = do

x <- getLine

putStrLn x

Monads

I Lists are monads

instance Monad [] where

return x = [x]

xs >>= f = concat (map f xs)

fail _ = []

I return makes a singleton list

I fail makes the empty list

I What about (>>=)?

Monads

I Lists are monads

instance Monad [] where

return x = [x]

xs >>= f = concat (map f xs)

fail _ = []

I return makes a singleton list

I fail makes the empty list

I What about (>>=)?

Monads

[1,2,3,4] == [0,2] >>= \ a ->

[1,2] >>= \ b ->

return (a + b)

== [0,2] >>= \ a ->

[1,2] >>= \ b ->

[a + b]

== [0,2] >>= \ a ->

concat (map (\ b -> [a + b]) [1,2])

== [0,2] >>= \ a ->

concat [[a+1], [a+2]]

== [0,2] >>= \ a ->

[a+1, a+2]

Monads

[1,2,3,4] == [0,2] >>= \ a ->

[1,2] >>= \ b ->

return (a + b)

== [0,2] >>= \ a ->

[1,2] >>= \ b ->

[a + b]

== [0,2] >>= \ a ->

concat (map (\ b -> [a + b]) [1,2])

== [0,2] >>= \ a ->

concat [[a+1], [a+2]]

== [0,2] >>= \ a ->

[a+1, a+2]

Monads

[1,2,3,4] == [0,2] >>= \ a -> [a+1, a+2]

== concat (map (\ a -> [a+1, a+2]) [0,2])

== concat [[0+1, 0+2], [2+1, 2+2]]

== [1,2,3,4]

Monads

[1,2,3,4] == [0,2] >>= \ a ->

[1,2] >>= \ b ->

return (a + b)

== do

a <- [0,2]

b <- [1,2]

return (a + b)

== [a + b |

a <- [0,2]

b <- [1,2]]

I List comprehensions are syntactic sugar for monadic
computations!

Monads

[1,2,3,4] == [0,2] >>= \ a ->

[1,2] >>= \ b ->

return (a + b)

== do

a <- [0,2]

b <- [1,2]

return (a + b)

== [a + b |

a <- [0,2]

b <- [1,2]]

I List comprehensions are syntactic sugar for monadic
computations!

Monads

[1,2,3,4] == [0,2] >>= \ a ->

[1,2] >>= \ b ->

return (a + b)

== do

a <- [0,2]

b <- [1,2]

return (a + b)

== [a + b |

a <- [0,2]

b <- [1,2]]

I List comprehensions are syntactic sugar for monadic
computations!

Monads

I Monad laws:
I Left Identity: return x >>= f = f x

I Right Identity: m >>= return = m

I Associativity: (m >>= f) >>= g = m >>= (\x -> f x >>= g)

Monads

I Functors are boxes
I That implement maps that lift normal functions (of type

a -> b) to functions over boxes (of type F a -> F b)

I Applicative functors are boxes that support function
application
I If you have a function in a box (F (a -> b)), you can apply it

to a box (F a) to get another box (F b)

I Monads are boxes that support functions that create their
own boxes
I If you have a monadic function (a -> M b), you can apply it

to a value (a) in a box (M a) to get another box (M b)

Monads

I Functors are boxes
I That implement maps that lift normal functions (of type

a -> b) to functions over boxes (of type F a -> F b)

I Applicative functors are boxes that support function
application
I If you have a function in a box (F (a -> b)), you can apply it

to a box (F a) to get another box (F b)

I Monads are boxes that support functions that create their
own boxes
I If you have a monadic function (a -> M b), you can apply it

to a value (a) in a box (M a) to get another box (M b)

Monads

I Functors represent context
I That implement maps that lift normal functions (of type

a -> b) to functions over context (of type F a -> F b)

I Applicative functors represent contexts that support function
application
I If you have a function in a context (F (a -> b)), you can

apply it to an object in context (F a) to get another object in
context (F b)

I Monads represent contexts that support functions that create
their own contexts
I If you have a monadic function (a -> M b), you can apply it

to a value (a) in a context (M a) to get another context (M b)

Monads

I Functors represent context
I That implement maps that lift normal functions (of type

a -> b) to functions over context (of type F a -> F b)

I Applicative functors represent contexts that support function
application
I If you have a function in a context (F (a -> b)), you can

apply it to an object in context (F a) to get another object in
context (F b)

I Monads represent contexts that can be joined together
I If you have a context in another context (M (M a)), you can

join the two contexts into one (M a)

Continuations in Language

I First, let us define some type synonyms
I Note that type Comp a r = (a -> r) -> r

type Cont a r = a -> r

type Comp a r = Cont a r -> r

Continuations in Language

I What are these functions?

cpsConst :: a -> Comp a r

cpsConst c = \ k -> k c

cpsApply :: Comp (a -> b) r -> Comp a r -> Comp b r

cpsApply m n = \ k -> n (\ b -> m (\ a -> k (a b)))

I Let (Comp r) be an applicative functor
I cpsConst = pure
I cpsApply = (<*>)

Continuations in Language

I What are these functions?

cpsConst :: a -> Comp a r

cpsConst c = \ k -> k c

cpsApply :: Comp (a -> b) r -> Comp a r -> Comp b r

cpsApply m n = \ k -> n (\ b -> m (\ a -> k (a b)))

I Let (Comp r) be an applicative functor
I cpsConst = pure
I cpsApply = (<*>)

Continuations in Language

I We use cpsConst to lift values to computations

intNP_CPS :: NP -> Comp Entity Bool

intNP_CPS SnowWhite = cpsConst snowWhite

intVP_CPS :: VP -> Comp (Entity -> Bool) Bool

intVP_CPS Laughed = cpsConst laugh

intTV_CPS :: TV -> Comp (Entity -> Entity -> Bool) Bool

intTV_CPS Loved = cpsConst love

intCN_CPS :: CN -> Comp (Entity -> Bool) Bool

intCN_CPS Girl = cpsConst girl

Continuations in Language

I We use cpsApply to do function application within
computations

intSent_CPS :: Sent -> Comp Bool Bool

intSent_CPS (Sent np vp) =

cpsApply (intVP_CPS vp) (intNP_CPS np)

intVP_CPS (VP1 tv np) =

cpsApply (intTV_CPS tv) (intNP_CPS np)

I So far, so good!
I No monads yet, though...

Continuations in Language

I We use cpsApply to do function application within
computations

intSent_CPS :: Sent -> Comp Bool Bool

intSent_CPS (Sent np vp) =

cpsApply (intVP_CPS vp) (intNP_CPS np)

intVP_CPS (VP1 tv np) =

cpsApply (intTV_CPS tv) (intNP_CPS np)

I So far, so good!
I No monads yet, though...

Continuations in Language

I van Eijck and Unger define special continuized determiner
interpretations

intDET_CPS :: DET -> (Comp (Entity -> Bool) Bool)

-> (Comp Entity Bool)

intDET_CPS Some = \ k p -> k (\ q ->

any p (filter q entities))

intDET_CPS Every = \ k p -> k (\ q ->

all p (filter q entities))

intDET_CPS No = \ k p -> k (\ q ->

not (any p (filter q entities)))

intDET_CPS The = \ k p -> k (\ q ->

singleton (filter q entities)

&& p (head (filter q entities)))

where

singleton [x] = True

singleton _ = False

Continuations in Language
I We don’t need them, though!

I We will use our determiner interpretations from before

intDET :: DET ->

(Entity -> Bool) -> (Entity -> Bool) -> Bool

intDET Some p q = any q (filter p entities)

intDET Every p q = all q (filter p entities)

intDET The p q = singleton plist && q (head plist)

where

plist = filter p entities

singleton [x] = True

singleton _ = False

intDET No p q = not (intDET Some p q)

Continuations in Language

I Note that
(Entity -> Bool) -> (Entity -> Bool) -> Bool =
(Entity -> Bool) -> Comp Entity Bool
I Determiner interpretations are monadic functions!

cpsBind :: Comp a r -> (a -> Comp b r) -> Comp b r

cpsBind x y = \ k -> x (\ a -> (y a) k)

I Let (Comp r) be a monad
I cpsBind = (>>=)

intNP_CPS (NP1 det cn)

= cpsBind (intCN_CPS cn) (intDET det)

Continuations in Language

I Note that
(Entity -> Bool) -> (Entity -> Bool) -> Bool =
(Entity -> Bool) -> Comp Entity Bool
I Determiner interpretations are monadic functions!

cpsBind :: Comp a r -> (a -> Comp b r) -> Comp b r

cpsBind x y = \ k -> x (\ a -> (y a) k)

I Let (Comp r) be a monad
I cpsBind = (>>=)

intNP_CPS (NP1 det cn)

= cpsBind (intCN_CPS cn) (intDET det)

Continuations in Language

I Note that
(Entity -> Bool) -> (Entity -> Bool) -> Bool =
(Entity -> Bool) -> Comp Entity Bool
I Determiner interpretations are monadic functions!

cpsBind :: Comp a r -> (a -> Comp b r) -> Comp b r

cpsBind x y = \ k -> x (\ a -> (y a) k)

I Let (Comp r) be a monad
I cpsBind = (>>=)

intNP_CPS (NP1 det cn)

= cpsBind (intCN_CPS cn) (intDET det)

Continuations in Language

compSent s = intSent_CPS s id

I “We interpret sentences using the function intSent CPS.
I The result of that function is a sentence computation, i.e. a

function of type (Bool -> Bool) -> Bool, that takes a
sentence continuation (representing the linguistic context of
the sentence) and returns a result value of type Bool.

I An example of a possible sentence continuation is negation: if
we had a negated sentence, we could apply the computation of
the unnegated sentence to the negation function neg.

I But here we do not want to bother about the linguistic context
of sentences and instead want the sentence computation to
return a result value of type Bool.

I Therefore we apply the sentence computation to the trivial
continuation, the identity function id.”

