# Vector Semantics and Embeddings 

Kenneth Lai

Brandeis University

November 9, 2022

## Announcements

- By 11:59pm tonight
- Final Project Idea due
- For $11 / 16$
- HW4 due


## Today's Plan

- Composition in Dynamic Semantics Handout
- Vector Semantics and Embeddings


## Today's Plan

- Composition in Dynamic Semantics Handout
- Vector Semantics and Embeddings
- (we'll see how far we get...)


## Summary of 8/29 Discussion



Desiderata

What should a theory of word meaning do for us?
Let's look at some desiderata
From lexical semantics, the linguistic study of word meaning

## Lemmas and senses

```
lemma
mouse（ N ）
sense 1．any of numerous small rodents．．． 2．a hand－operated device that controls a cursor．．．
```

Modified from the online thesaurus WordNet

A sense or＂concept＂is the meaning component of a word Lemmas can be polysemous（have multiple senses）

## Relations between senses：Synonymy

Synonyms have the same meaning in some or all contexts．
－filbert／hazelnut
－couch／sofa
－big／large
－automobile／car
－vomit／throw up
－water／ $\mathrm{H}_{2} \mathrm{O}$

## Relations between senses: Synonymy

Note that there are probably no examples of perfect synonymy.

- Even if many aspects of meaning are identical
- Still may differ based on politeness, slang, register, genre, etc.


## Relation: Synonymy?

water/ $/ \mathrm{H}_{2} \mathrm{O}$
" $\mathrm{H}_{2} \mathrm{O}$ " in a surfing guide?
big/large
my big sister != my large sister

## The Linguistic Principle of Contrast

Difference in form $\rightarrow$ difference in meaning

## Abbé Gabriel Girard 1718

Re: "exact" synonyms

"je ne crois pas qu'il y air demor fynonime dans aucune Langue.
[I do not believe that there is a synonymous word in any language]

## LA' JUSTESSE <br> DE LA

LANGUE FRANÇOISE,
$0 v$
LES DIFFERENTES SIGNIFICATIONS
DESMOTS QUIPASSENT POUR SYNONIMES

Dar M.l'Albe GIRARD C. D. M. D. D. B.

A PARIS,
Chez Laurent d'Houry, Imprimeur-
L braire, au bas de fa rue de ta Harpe, visà vis la rue S . Scverin!, au Saint Efprit.

M DCC. XVIII.
Avce Approbatorn ©in Irivilegs $d_{i s}$ Roy.

## Relation: Similarity

Words with similar meanings. Not synonyms, but sharing some element of meaning
car, bicycle
cow, horse

## Ask humans how similar 2 words are

| word1 | word2 | similarity |
| :--- | :--- | :--- |
| vanish | disappear | 9.8 |
| behave | obey | 7.3 |
| belief | impression | 5.95 |
| muscle | bone | 3.65 |
| modest | flexible | 0.98 |
| hole | agreement | 0.3 |

## Relation：Word relatedness

Also called＂word association＂
Words can be related in any way，perhaps via a semantic frame or field
－coffee，tea：similar
－coffee，cup：related，not similar

## Semantic field

Words that

- cover a particular semantic domain
- bear structured relations with each other.
hospitals
surgeon, scalpel, nurse, anaesthetic, hospital restaurants
waiter, menu, plate, food, menu, chef
houses
door, roof, kitchen, family, bed


## Relation: Antonymy

Senses that are opposites with respect to only one feature of meaning
Otherwise, they are very similar!
dark/light short/long fast/slow rise/fall
hot/cold up/down in/out

More formally: antonyms can

- define a binary opposition or be at opposite ends of a scale
- long/short, fast/slow
- Be reversives:
- rise/fall, up/down


## Connotation（sentiment）

－Words have affective meanings
－Positive connotations（happy）
－Negative connotations（sad）
－Connotations can be subtle：
－Positive connotation：copy，replica，reproduction
－Negative connotation：fake，knockoff，forgery
－Evaluation（sentiment！）
－Positive evaluation（great，love）
－Negative evaluation（terrible，hate）

## Connotation

## Words seem to vary along 3 affective dimensions:

- valence: the pleasantness of the stimulus
- arousal: the intensity of emotion provoked by the stimulus
- dominance: the degree of control exerted by the stimulus

|  | Word | Score |  | Word | Score |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Valence | love | 1.000 | toxic | 0.008 |  |
|  | happy | 1.000 | nightmare | 0.005 |  |
| Arousal | elated | 0.960 | mellow | 0.069 |  |
|  | frenzy | 0.965 | napping | 0.046 |  |
| Dominance | powerful | 0.991 | weak | 0.045 |  |
|  | leadership | 0.983 | empty | 0.081 |  |

Values from NRC VAD Lexicon (Mohammad 2018)

## So far

Concepts or word senses

- Have a complex many-to-many association with words (homonymy, multiple senses)
Have relations with each other
- Synonymy
- Antonymy
- Similarity
- Relatedness
- Connotation


## Vector Semantics \& Embeddings

## Vector Semantics

## Computational models of word meaning

Can we build a theory of how to represent word meaning，that accounts for at least some of the desiderata？

We＇ll introduce vector semantics
The standard model in language processing！
Handles many of our goals！

## Ludwig Wittgenstein

PI \#43:
"The meaning of a word is its use in the language"

## Let＇s define words by their usages

One way to define＂usage＂：
words are defined by their environments（the words around them）

Zellig Harris（1954）：
If $A$ and $B$ have almost identical environments we say that they are synonyms．

## What does recent English borrowing ongchoi mean？

Suppose you see these sentences：
－Ong choi is delicious sautéed with garlic．
－Ong choi is superb over rice
－Ong choi leaves with salty sauces
And you＇ve also seen these：
－．．．spinach sautéed with garlic over rice
－Chard stems and leaves are delicious
－Collard greens and other salty leafy greens
Conclusion：
－Ongchoi is a leafy green like spinach，chard，or collard greens
－We could conclude this based on words like＂leaves＂and＂delicious＂and＂sauteed＂

## Ongchoi：Ipomoea aquatica＂Water Spinach＂

空心菜<br>kangkong<br>rau muống



Yamaguchi，Wikimedia Commons，public domain

## The Distributional Hypothesis

- "You shall know a word by the company it keeps." (Firth, 1957)
- "It may be presumed that any two morphemes $A$ and $B$ having different meanings, also differ somewhere in distribution: there are some environments in which one occurs and the other does not." (Harris, 1951)
- "The similarity of the contextual representations of two words contributes to the semantic similarity of those words." (Miller and Charles, 1991) (emphasis mine)


## The Distributional Hypothesis

- "You shall know a word by the company it keeps." (Firth, 1957)
- "It may be presumed that any two morphemes $A$ and $B$ having different meanings, also differ somewhere in distribution: there are some environments in which one occurs and the other does not." (Harris, 1951)
- "The similarity of the contextual representations of two words contributes to the semantic similarity of those words." (Miller and Charles, 1991) (emphasis mine)
- Words can be represented by (abstractions over) their contexts
- Specifically, linguistic context


# Idea 1：Defining meaning by linguistic distribution 

Let＇s define the meaning of a word by its distribution in language use，meaning its neighboring words or grammatical environments．

## Idea 2: Meaning as a point in space (Osgood et al. 1957)

3 affective dimensions for a word

- valence: pleasantness
- arousal: intensity of emotion
- dominance: the degree of control exerted

|  | Word | Score |  | Word | Score |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Valence | love | 1.000 | toxic | 0.008 |  |
|  | happy | 1.000 | nightmare | 0.005 |  |
| Arousal | elated | 0.960 | mellow | 0.069 | NRC VAD Lexicon |
|  | frenzy | 0.965 | napping | 0.046 | (Mohammad 2018) |

Hence the connotation of a word is a vector in 3-space

Idea 1: Defining meaning by linguistic distribution
Idea 2: Meaning as a point in multidimensional space

Defining meaning as a point in space based on distribution
Each word = a vector (not just "good" or " $\mathrm{w}_{45}$ ")
Similar words are "nearby in semantic space"
We build this space automatically by seeing which words are nearby in text


## We define meaning of a word as a vector

Called an＂embedding＂because it＇s embedded into a space（see textbook）
The standard way to represent meaning in NLP
Every modern NLP algorithm uses embeddings as the representation of word meaning
Fine－grained model of meaning for similarity

## Intuition：why vectors？

Consider sentiment analysis：
－With words，a feature is a word identity
－Feature 5：＇The previous word was＂terrible＂＇
－requires exact same word to be in training and test
－With embeddings：
－Feature is a word vector
－＇The previous word was vector［35，22，17．．．］
－Now in the test set we might see a similar vector $[34,21,14]$
－We can generalize to similar but unseen words！！！

## We＇ll discuss 2 kinds of embeddings

tf－idf
－Information Retrieval workhorse！
－A common baseline model
－Sparse vectors
－Words are represented by（a simple function of）the counts of nearby words

Word2vec
－Dense vectors
－Representation is created by training a classifier to predict whether a word is likely to appear nearby
－Later we＇ll discuss extensions called contextual embeddings

## Distributed Representations of Words

- More generally, two approaches to distributed, distributional representations (Baroni et al. 2014):
- Count-based
- Count occurrences of words in contexts, optionally followed by some mathematical transformation (e.g., tf-idf, PPMI, SVD)
- Prediction-based
- Given some context vector(s) c, predict some word $\mathbf{x}$ (or vice versa)
- a.k.a. language modeling-based
(e.g., word2vec,

4, (1)

## From now on： <br> Computing with meaning representations instead of string representations

荃者所以在鱼，得鱼而忘荃 Nets are for fish； Once you get the fish，you can forget the net．
言者所以在意，得意而忘言 Words are for meaning；
Once you get the meaning，you can forget the words
庄子（Zhuangzi），Chapter 26

## Vector Semantics \& Embeddings

## Vector Semantics

## Vector Semantics \& Embeddings

## Words and Vectors

## Term-document matrix

Each document is represented by a vector of words

|  | As You Like It | Twelfth Night | Julius Caesar | Henry V |
| :---: | :---: | :---: | :---: | :---: |
| battle <br> good fool wit | $\left(\begin{array}{c}1 \\ 14 \\ 36 \\ 20\end{array}\right]$ | 0 <br> 80 <br> 58 <br> 15 | $\left(\begin{array}{c}7 \\ 62 \\ 1 \\ 2\end{array}\right)$ | 13 89 4 3 |

## Visualizing document vectors



## Vectors are the basis of information retrieval

$\left.\begin{array}{ccccc}\hline & \text { As You Like It } & \text { Twelfth Night } & \text { Julius Caesar } & \text { Henry V } \\ \hline \begin{array}{c}\text { battle } \\ \text { good } \\ \text { fool } \\ \text { wit }\end{array} & \begin{array}{l}1 \\ \hline\end{array} & 34 & 0 \\ 36 \\ 20\end{array}\right)$

Vectors are similar for the two comedies

But comedies are different than the other two Comedies have more fools and wit and fewer battles.

## Idea for word meaning: Words can be vectors too!!!

|  | As You Like It | Twelfth Night | Julius Caesar | Henry V |
| :---: | :---: | :---: | :---: | :---: |
| battle <br> good <br> fool <br> wit | 1 | 0 | 7 | 13 |

battle is "the kind of word that occurs in Julius Caesar and Henry V"
fool is "the kind of word that occurs in comedies, especially Twelfth Night"

## More common: word-word matrix (or "term-context matrix")

Two words are similar in meaning if their context vectors are similar
is traditionally followed by cherry pie, a traditional dessert often mixed, such as strawberry rhubarb pie. Apple pie computer peripherals and personal digital assistants. These devices usually a computer. This includes information available on the internet

|  | aardvark | $\ldots$ | computer | data | result | pie | sugar | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| cherry | 0 | $\ldots$ | 2 | 8 | 9 | 442 | 25 | $\ldots$ |
| strawberry | 0 | $\ldots$ | 0 | 0 | 1 | 60 | 19 | $\ldots$ |
| digital | 0 | $\ldots$ | 1670 | 1683 | 85 | 5 | 4 | $\ldots$ |
| information | 0 | $\ldots$ | 3325 | 3982 | 378 | 5 | 13 | $\ldots$ |



## Vector Semantics \& Embeddings

## Words and Vectors

## Cosine for computing word similarity

Vector Semantics \& Embeddings

## Computing word similarity：Dot product and cosine

The dot product between two vectors is a scalar：

$$
\operatorname{dot} \operatorname{product}(\mathbf{v}, \mathbf{w})=\mathbf{v} \cdot \mathbf{w}=\sum_{i=1}^{N} v_{i} w_{i}=v_{1} w_{1}+v_{2} w_{2}+\ldots+v_{N} w_{N}
$$

The dot product tends to be high when the two vectors have large values in the same dimensions Dot product can thus be a useful similarity metric between vectors

## Problem with raw dot－product

Dot product favors long vectors
Dot product is higher if a vector is longer（has higher values in many dimension）
Vector length：

$$
|\mathbf{v}|=\sqrt{\sum_{i=1}^{N} v_{i}^{2}}
$$

Frequent words（of，the，you）have long vectors（since they occur many times with other words）．
So dot product overly favors frequent words

## Alternative: cosine for computing word similarity

$$
\operatorname{cosine}(\vec{v}, \vec{w})=\frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|}=\frac{\sum_{i=1}^{N} v_{i} w_{i}}{\sqrt{\sum_{i=1}^{N} v_{i}^{2}} \sqrt{\sum_{i=1}^{N} w_{i}^{2}}}
$$

Based on the definition of the dot product between two vectors $a$ and $b$

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b} & =|\mathbf{a}||\mathbf{b}| \cos \theta \\
\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} & =\cos \theta
\end{aligned}
$$

## Cosine as a similarity metric

-1 ：vectors point in opposite directions
+1 ：vectors point in same directions
0 ：vectors are orthogonal


But since raw frequency values are non－negative，the cosine for term－term matrix vectors ranges from 0－1

## Cosine examples

|  | pie | data | computer |
| :--- | :--- | :--- | :--- |
| cherry | 442 | 8 | 2 |
| digital | 5 | 1683 | 1670 |
| information | 5 | 3982 | 3325 |

$\cos ($ cherry, information $)=$

$$
\frac{442 * 5+8 * 3982+2 * 3325}{\sqrt{442^{2}+8^{2}+2^{2}} \sqrt{5^{2}+3982^{2}+3325^{2}}}=.017
$$

$\cos ($ digital, information $)=$

$$
\frac{5 * 5+1683 * 3982+1670 * 3325}{\sqrt{5^{2}+1683^{2}+1670^{2}} \sqrt{5^{2}+3982^{2}+3325^{2}}}=.996
$$

## Visualizing cosines (well, angles)



Dimension 2: ‘computer’

## Vector Semantics \& Embeddings

## Cosine for computing word similarity

