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Announcements

I For Wednesday
I HW4 due

I Course registration for spring 2023 begins tomorrow!



Today’s Plan

I Vector Semantics and Embeddings
I TF-IDF
I word2vec
I Properties of Embeddings
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But raw frequency is a bad representation

• The co-occurrence matrices we have seen represent each 
cell by word frequencies.

• Frequency is clearly useful; if sugar appears a lot near 
apricot, that's useful information.

• But overly frequent words like the, it, or they are not very 
informative about the context

• It's a paradox! How can we balance these two conflicting 
constraints? 



Two common solutions for word weighting

tf-idf:     tf-idf value for word t in document d:

PMI: (Pointwise mutual information)
◦ PMI 𝒘𝟏, 𝒘𝟐 = 𝒍𝒐𝒈 𝒑(𝒘𝟏,𝒘𝟐)

𝒑 𝒘𝟏 𝒑(𝒘𝟐)
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Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We assign importance to these more discriminative words like Romeo via
the inverse document frequency or idf term weight (Sparck Jones, 1972).idf

The idf is defined using the fraction N/dft , where N is the total number of
documents in the collection, and dft is the number of documents in which
term t occurs. The fewer documents in which a term occurs, the higher this
weight. The lowest weight of 1 is assigned to terms that occur in all the
documents. It’s usually clear what counts as a document: in Shakespeare
we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper
articles, the document is a single article. Occasionally your corpus might
not have appropriate document divisions and you might need to break up the
corpus into documents yourself for the purposes of computing idf.

Because of the large number of documents in many collections, this mea-
sure is usually squashed with a log function. The resulting definition for in-
verse document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.12)

Here are some idf values for some words in the Shakespeare corpus, ranging
from extremely informative words which occur in only one play like Romeo, to
those that occur in a few like salad or Falstaff, to those which are very common like
fool or so common as to be completely non-discriminative since they occur in all 37
plays like good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.074
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighting of the value for word t in document d, wt,d thus combinestf-idf

term frequency with idf:

wt,d = tft,d ⇥ idft (6.13)

Fig. 6.8 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2.
Note that the tf-idf values for the dimension corresponding to the word good have
now all become 0; since this word appears in every document, the tf-idf algorithm
leads it to be ignored in any comparison of the plays. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

The tf-idf weighting is by far the dominant way of weighting co-occurrence ma-
trices in information retrieval, but also plays a role in many other aspects of natural

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

Words like "the" or "it" have very low idf

See if words like "good" appear more often with "great" than 
we would expect by chance



Term frequency (tf)

tft,d = count(t,d)

Instead of using raw count, we squash a bit:

tft,d = log10(count(t,d)+1) 



Document frequency (df)

dft is the number of documents t occurs in.
(note this is not collection frequency: total count across 
all documents)
"Romeo" is very distinctive for one Shakespeare play:
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that are too frequent—ubiquitous, like the or good— are unimportant. How can we
balance these two conflicting constraints?

There are two common solutions to this problem: in this section we’ll describe
the tf-idf algorithm, usually used when the dimensions are documents. In the next
we introduce the PPMI algorithm (usually used when the dimensions are words).

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) is the product
of two terms, each term capturing one of these two intuitions:

The first is the term frequency (Luhn, 1957): the frequency of the word t in theterm frequency

document d. We can just use the raw count as the term frequency:

tft,d = count(t,d) (6.11)

More commonly we squash the raw frequency a bit, by using the log10 of the fre-
quency instead. The intuition is that a word appearing 100 times in a document
doesn’t make that word 100 times more likely to be relevant to the meaning of the
document. Because we can’t take the log of 0, we normally add 1 to the count:2

tft,d = log10(count(t,d)+1) (6.12)

If we use log weighting, terms which occur 0 times in a document would have
tf = log10(1) = 0, 10 times in a document tf = log10(11) = 1.4, 100 times tf =
log10(101) = 2.004, 1000 times tf = 3.00044, and so on.

The second factor in tf-idf is used to give a higher weight to words that occur
only in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that occur
frequently across the entire collection aren’t as helpful. The document frequencydocument

frequency
dft of a term t is the number of documents it occurs in. Document frequency is
not the same as the collection frequency of a term, which is the total number of
times the word appears in the whole collection in any document. Consider in the
collection of Shakespeare’s 37 plays the two words Romeo and action. The words
have identical collection frequencies (they both occur 113 times in all the plays) but
very different document frequencies, since Romeo only occurs in a single play. If
our goal is to find documents about the romantic tribulations of Romeo, the word
Romeo should be highly weighted, but not action:

Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We emphasize discriminative words like Romeo via the inverse document fre-
quency or idf term weight (Sparck Jones, 1972). The idf is defined using the frac-idf

tion N/dft , where N is the total number of documents in the collection, and dft is
the number of documents in which term t occurs. The fewer documents in which a
term occurs, the higher this weight. The lowest weight of 1 is assigned to terms that
occur in all the documents. It’s usually clear what counts as a document: in Shake-
speare we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper articles,
the document is a single article. Occasionally your corpus might not have appropri-
ate document divisions and you might need to break up the corpus into documents
yourself for the purposes of computing idf.

2 Or we can use this alternative: tft,d =

⇢
1+ log10 count(t,d) if count(t,d) > 0
0 otherwise



Inverse document frequency (idf)
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Because of the large number of documents in many collections, this measure
too is usually squashed with a log function. The resulting definition for inverse
document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.13)

Here are some idf values for some words in the Shakespeare corpus, ranging from
extremely informative words which occur in only one play like Romeo, to those that
occur in a few like salad or Falstaff, to those which are very common like fool or so
common as to be completely non-discriminative since they occur in all 37 plays like
good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighted value wt,d for word t in document d thus combines termtf-idf

frequency tft,d (defined either by Eq. 6.11 or by Eq. 6.12) with idf from Eq. 6.13:

wt,d = tft,d ⇥ idft (6.14)

Fig. 6.9 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2,
using the tf equation Eq. 6.12. Note that the tf-idf values for the dimension corre-
sponding to the word good have now all become 0; since this word appears in every
document, the tf-idf algorithm leads it to be ignored. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log10(20 + 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.6.

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).
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The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
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3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

N is the total number of documents 
in the collection



What is a document?

Could be a play or a Wikipedia article
But for the purposes of tf-idf, documents can be 
anything; we often call each paragraph a document!



Final tf-idf weighted value for a word

Raw counts:

tf-idf:
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3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).
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As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

represented as a count vector, a column in Fig. 6.3.
To review some basic linear algebra, a vector is, at heart, just a list or array ofvector

numbers. So As You Like It is represented as the list [1,114,36,20] (the first column
vector in Fig. 6.3) and Julius Caesar is represented as the list [7,62,1,2] (the third
column vector). A vector space is a collection of vectors, characterized by theirvector space

dimension. In the example in Fig. 6.3, the document vectors are of dimension 4,dimension

just so they fit on the page; in real term-document matrices, the vectors representing
each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space indicates different meaningful di-
mensions on which documents vary. Thus the first dimension for both these vectors
corresponds to the number of times the word battle occurs, and we can compare
each dimension, noting for example that the vectors for As You Like It and Twelfth
Night have similar values (1 and 0, respectively) for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as a point in |V |-dimensional space;
thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-dimensional
spaces are hard to visualize, Fig. 6.4 shows a visualization in two dimensions; we’ve
arbitrarily chosen the dimensions corresponding to the words battle and fool.
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Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are
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Pointwise Mutual Information

Pointwise mutual information: 
Do events x and y co-occur more than if they were independent?

PMI between two words:  (Church & Hanks 1989)
Do words x and y co-occur more than if they were independent? 

PMI 𝑤𝑜𝑟𝑑!, 𝑤𝑜𝑟𝑑" = log"
𝑃(𝑤𝑜𝑟𝑑!, 𝑤𝑜𝑟𝑑")
𝑃 𝑤𝑜𝑟𝑑! 𝑃(𝑤𝑜𝑟𝑑")

PMI(X,Y ) = log2
P(x,y)
P(x)P(y)



Positive Pointwise Mutual Information
◦ PMI ranges from −∞ to +∞
◦ But the negative values are problematic

◦ Things are co-occurring less than we expect by chance
◦ Unreliable without enormous corpora

◦ Imagine w1 and w2 whose probability is each 10-6

◦ Hard to be sure p(w1,w2) is significantly different than 10-12

◦ Plus it’s not clear people are good at “unrelatedness”
◦ So we just replace negative PMI values by 0
◦ Positive PMI (PPMI) between word1 and word2:

PPMI 𝑤𝑜𝑟𝑑!, 𝑤𝑜𝑟𝑑" = max log"
𝑃(𝑤𝑜𝑟𝑑!, 𝑤𝑜𝑟𝑑")
𝑃 𝑤𝑜𝑟𝑑! 𝑃(𝑤𝑜𝑟𝑑")

, 0



Computing PPMI on a term-context matrix

Matrix F with W rows (words) and C columns (contexts)
fij is # of times wi occurs in context cj

62
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context c j. This can be turned into a PPMI matrix where ppmii j gives the PPMI
value of word wi with context c j as follows:

pi j =
fi jPW

i=1
PC

j=1 fi j
pi⇤ =

PC
j=1 fi jPW

i=1
PC

j=1 fi j
p⇤ j =

PW
i=1 fi jPW

i=1
PC

j=1 fi j
(6.19)

PPMIi j = max(log2
pi j

pi⇤p⇤ j
,0) (6.20)

Let’s see some PPMI calculations. We’ll use Fig. 6.10, which repeats Fig. 6.6 plus
all the count marginals, and let’s pretend for ease of calculation that these are the
only words/contexts that matter.

computer data result pie sugar count(w)
cherry 2 8 9 442 25 486

strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 3447

information 3325 3982 378 5 13 7703

count(context) 4997 5673 473 512 61 11716
Figure 6.10 Co-occurrence counts for four words in 5 contexts in the Wikipedia corpus,
together with the marginals, pretending for the purpose of this calculation that no other
words/contexts matter.

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 6.6 encompassed all the relevant word contexts/dimensions,
as follows:

P(w=information,c=data) =
3982
11716

= .3399

P(w=information) =
7703
11716

= .6575

P(c=data) =
5673
11716

= .4842

ppmi(information,data) = log2(.3399/(.6575⇤ .4842)) = .0944

Fig. 6.11 shows the joint probabilities computed from the counts in Fig. 6.10, and
Fig. 6.12 shows the PPMI values. Not surprisingly, cherry and strawberry are highly
associated with both pie and sugar, and data is mildly associated with information.

p(w,context) p(w)
computer data result pie sugar p(w)

cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415
strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068

digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942
information 0.2838 0.3399 0.0323 0.0004 0.0011 0.6575

p(context) 0.4265 0.4842 0.0404 0.0437 0.0052
Figure 6.11 Replacing the counts in Fig. 6.6 with joint probabilities, showing the marginals
around the outside.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency

pij =
fij

fij
j=1

C

∑
i=1

W

∑
pi* =

fij
j=1

C

∑

fij
j=1

C

∑
i=1

W

∑
p* j =

fij
i=1

W

∑

fij
j=1

C

∑
i=1

W

∑

pmiij = log2
pij

pi*p* j
ppmiij =

pmiij if  pmiij > 0

0 otherwise

!
"
#

$#



p(w=information,c=data) = 
p(w=information) =
p(c=data) =

63

= .33993982/111716

7703/11716 = .6575

5673/11716 = .4842

pij =
fij

fij
j=1

C

∑
i=1

W

∑

p(wi ) =
fij

j=1

C

∑

N
p(cj ) =

fij
i=1

W

∑

N
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PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency
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context c j. This can be turned into a PPMI matrix where ppmii j gives the PPMI
value of word wi with context c j as follows:
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(6.19)

PPMIi j = max(log2
pi j

pi⇤p⇤ j
,0) (6.20)

Let’s see some PPMI calculations. We’ll use Fig. 6.10, which repeats Fig. 6.6 plus
all the count marginals, and let’s pretend for ease of calculation that these are the
only words/contexts that matter.

computer data result pie sugar count(w)
cherry 2 8 9 442 25 486

strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 3447

information 3325 3982 378 5 13 7703

count(context) 4997 5673 473 512 61 11716
Figure 6.10 Co-occurrence counts for four words in 5 contexts in the Wikipedia corpus,
together with the marginals, pretending for the purpose of this calculation that no other
words/contexts matter.

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 6.6 encompassed all the relevant word contexts/dimensions,
as follows:

P(w=information,c=data) =
3982
11716

= .3399

P(w=information) =
7703
11716

= .6575

P(c=data) =
5673
11716

= .4842

ppmi(information,data) = log2(.3399/(.6575⇤ .4842)) = .0944

Fig. 6.11 shows the joint probabilities computed from the counts in Fig. 6.10, and
Fig. 6.12 shows the PPMI values. Not surprisingly, cherry and strawberry are highly
associated with both pie and sugar, and data is mildly associated with information.

p(w,context) p(w)
computer data result pie sugar p(w)
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information 0.2838 0.3399 0.0323 0.0004 0.0011 0.6575

p(context) 0.4265 0.4842 0.0404 0.0437 0.0052
Figure 6.11 Replacing the counts in Fig. 6.6 with joint probabilities, showing the marginals
around the outside.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency
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pmiij = log2
pij

pi*p* j

pmi(information,data) = log2 (.3399 / (.6575*.4842) ) = .0944
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computer data result pie sugar
cherry 0 0 0 4.38 3.30

strawberry 0 0 0 4.10 5.51
digital 0.18 0.01 0 0 0

information 0.02 0.09 0.28 0 0
Figure 6.12 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 6.11. Note that most of the 0 PPMI values are ones that had
a negative PMI; for example PMI(cherry,computer) = -6.7, meaning that cherry and computer
co-occur on Wikipedia less often than we would expect by chance, and with PPMI we replace
negative values by zero.

events is to slightly change the computation for P(c), using a different function Pa(c)
that raises the probability of the context word to the power of a:

PPMIa(w,c) = max(log2
P(w,c)

P(w)Pa(c)
,0) (6.21)

Pa(c) =
count(c)a

P
c count(c)a (6.22)

Levy et al. (2015) found that a setting of a = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams described below in Eq. 6.32). This works because raising the count to a =
0.75 increases the probability assigned to rare contexts, and hence lowers their PMI
(Pa(c) > P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

6.7 Applications of the tf-idf or PPMI vector models

In summary, the vector semantics model we’ve described so far represents a target
word as a vector with dimensions corresponding either to to the documents in a large
collection (the term-document matrix) or to the counts of words in some neighboring
window (the term-term matrix). The values in each dimension are counts, weighted
by tf-idf (for term-document matrices) or PPMI (for term-term matrices), and the
vectors are sparse (since most values are zero).

The model computes the similarity between two words x and y by taking the
cosine of their tf-idf or PPMI vectors; high cosine, high similarity. This entire model
is sometimes referred to as the tf-idf model or the PPMI model, after the weighting
function.

The tf-idf model of meaning is often used for document functions like deciding
if two documents are similar. We represent a document by taking the vectors of
all the words in the document, and computing the centroid of all those vectors.centroid

The centroid is the multidimensional version of the mean; the centroid of a set of
vectors is a single vector that has the minimum sum of squared distances to each of
the vectors in the set. Given k word vectors w1,w2, ...,wk, the centroid document
vector d is:document

vector

d =
w1 +w2 + ...+wk

k
(6.23)

Resulting PPMI matrix (negatives replaced by 0) 



Weighting PMI

PMI is biased toward infrequent events
◦ Very rare words have very high PMI values

Two solutions:
◦ Give rare words slightly higher probabilities
◦ Use add-one smoothing (which has a similar effect)
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Weighting PMI: Giving rare context words slightly 
higher probability

Raise the context probabilities to 𝛼 = 0.75:

This helps because 𝑃# 𝑐 > 𝑃 𝑐 for rare c
Consider two events, P(a) = .99 and P(b)=.01

𝑃# 𝑎 = .%%."#

.%%."#&.'!."#
= .97 𝑃# 𝑏 = .'!."#

.'!."#&.'!."#
= .03
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p(w,context) p(w)
computer data pinch result sugar p(w)

apricot 0 0 0.5 0 0.5 0.11
pineapple 0 0 0.5 0 0.5 0.11

digital 0.11 0.5 0 0.5 0 0.21
information 0.5 .32 0 0.21 0 0.58

p(context) 0.16 0.37 0.11 0.26 0.11
Figure 19.3 Replacing the counts in Fig. 17.2 with joint probabilities, showing the
marginals around the outside.

computer data pinch result sugar
apricot 0 0 2.25 0 2.25

pineapple 0 0 2.25 0 2.25
digital 1.66 0 0 0 0

information 0 0.57 0 0.47 0
Figure 19.4 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 17.2 again showing six dimensions.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency
events is to slightly change the computation for P(c), using a different function Pa(c)
that raises contexts to the power of a (Levy et al., 2015):

PPMIa(w,c) = max(log2
P(w,c)

P(w)Pa(c)
,0) (19.8)

Pa(c) =
count(c)a

P
c count(c)a (19.9)

Levy et al. (2015) found that a setting of a = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams (Mikolov et al., 2013a) and GloVe (Pennington et al., 2014)). This works
because raising the probability to a = 0.75 increases the probability assigned to rare
contexts, and hence lowers their PMI (Pa(c) > P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

computer data pinch result sugar
apricot 2 2 3 2 3

pineapple 2 2 3 2 3
digital 4 3 2 3 2

information 3 8 2 6 2
Figure 19.5 Laplace (add-2) smoothing of the counts in Fig. 17.2.

19.2.1 Measuring similarity: the cosine
To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors. In this section we’ll
motivate and introduce this important measure.



Distributed Representations of Words
I More generally, two approaches to distributed, distributional

representations (Baroni et al. 2014):
I Count-based

I Count occurrences of words in contexts, optionally followed by
some mathematical transformation (e.g., tf-idf, PPMI, SVD)

I Prediction-based
I Given some context vector(s) c, predict some word x (or vice

versa)
I a.k.a. language modeling-based

(e.g., word2vec, , )

Elmo source Bert source

https://muppet.fandom.com/wiki/Elmo
https://muppet.fandom.com/wiki/Bert


Language Models

I Given some context vector(s) c, predict some word x (or vice
versa)

I Two approaches to language models:
I Generative models

I Model the joint probability distribution P(x, c)
I Examples: n-gram language models

I Unigram: predict P(xi )
I Bigram: predict P(xi |xi−1)
I Trigram: predict P(xi |xi−2, xi−1)



Language Models

I Given some context vector(s) c, predict some word x (or vice
versa)

I Two approaches to language models:
I Discriminative models

I Predict the conditional probability P(x|c) (or P(c|x)) directly
I Examples: neural network language models

I Feedforward: word2vec (Mikolov et al., 2013a, 2013b)

I Recurrent: (Peters et al., 2018)

I Transformer: (Devlin et al., 2019)

Elmo source Bert source

https://muppet.fandom.com/wiki/Elmo
https://muppet.fandom.com/wiki/Bert


word2vec

I Based on a feedforward neural network language model

xi−2 xi−1 xi+1 xi+2
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x̂i
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x̂i−2 x̂i−1 x̂i+1 x̂i+2

Skip-gram



Neural Networks
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I Output layer

I Hidden layer(s)

I Input layer

I x is the input
I h is the hidden layer output

I Can be seen as
intermediate
representation of the
input

I ŷ is the predicted output
I ˆ= predicted
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Neural Networks

x

h

ŷ

W

C

I Output layer

I Hidden layer(s)

I Input layer

I h = g(x ·W)
I ŷ = f (h · C)

I W and C are weight (or
parameter) matrices

I May or may not
include a bias term

I g and f are activation
functions



word2vec

I Based on a feedforward neural network language model

xi−2 xi−1 xi+1 xi+2

h

x̂i

CBOW

xi

h

x̂i−2 x̂i−1 x̂i+1 x̂i+2

Skip-gram

I Continuous bag of words (CBOW): use context to predict
current word

I Skip-gram: use current word to predict context



CBOW

xi−2 xi−1 xi+1 xi+2

h

x̂i

I Input layer: one-hot word vectors
I

[
0 · · · 0 1 0 · · · 0

]
I Context words within some window



CBOW

xi−2 xi−1 xi+1 xi+2

h

x̂i

I Hidden (projection) layer: identity activation function, no bias
I Weight matrix shared for all context words
I Input → hidden = table lookup (in weight matrix)
I Context word vectors are averaged



CBOW

xi−2 xi−1 xi+1 xi+2

h

x̂i

I Output layer: softmax activation function
I Numbers → probabilities



Skip-gram

xi

h

x̂i−2 x̂i−1 x̂i+1 x̂i+2

W

C

I Input layer: one-hot word vectors
I

[
0 · · · 0 1 0 · · · 0

]



Skip-gram

xi

h

x̂i−2 x̂i−1 x̂i+1 x̂i+2

W

C

I Hidden (projection) layer: identity activation function, no bias
I Input → hidden = table lookup (in weight matrix)



Skip-gram

xi

h

x̂i−2 x̂i−1 x̂i+1 x̂i+2

W

C

I Output layer: softmax activation function
I Predict context words within some window
I Separate classification for each context word
I Closer context words sampled more than distant context words



word2vec

I Skip-gram model: for each word, word2vec learns two word
embeddings
I Target word vector w (row of W, = output of hidden layer)
I Context word vector c (column of C)

I Common final word embeddings
I Add w + c
I Just w (throw away c)
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The kinds of neighbors depend on window size

Small windows (C= +/- 2) : nearest words are syntactically 
similar words in same taxonomy

◦Hogwarts nearest neighbors are other fictional schools
◦Sunnydale, Evernight, Blandings

Large windows (C= +/- 5) :  nearest words are related 
words in same semantic field

◦Hogwarts nearest neighbors are Harry Potter world:
◦Dumbledore, half-blood,  Malfoy
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For example Levy and Goldberg (2014a) showed that using skip-gram with a
window of ±2, the most similar words to the word Hogwarts (from the Harry Potter
series) were names of other fictional schools: Sunnydale (from Buffy the Vampire
Slayer) or Evernight (from a vampire series). With a window of ±5, the most similar
words to Hogwarts were other words topically related to the Harry Potter series:
Dumbledore, Malfoy, and half-blood.

It’s also often useful to distinguish two kinds of similarity or association between
words (Schütze and Pedersen, 1993). Two words have first-order co-occurrencefirst-order

co-occurrence
(sometimes called syntagmatic association) if they are typically nearby each other.
Thus wrote is a first-order associate of book or poem. Two words have second-order
co-occurrence (sometimes called paradigmatic association) if they have similarsecond-order

co-occurrence
neighbors. Thus wrote is a second-order associate of words like said or remarked.

Analogy/Relational Similarity: Another semantic property of embeddings is their
ability to capture relational meanings. In an important early vector space model of
cognition, Rumelhart and Abrahamson (1973) proposed the parallelogram modelparallelogram

model
for solving simple analogy problems of the form a is to b as a* is to what?. In such
problems, a system given a problem like apple:tree::grape:?, i.e., apple is to tree as
grape is to , and must fill in the word vine. In the parallelogram model, illus-
trated in Fig. 6.15, the vector from the word apple to the word tree (=

#       »
apple� #   »tree)

is added to the vector for grape ( #        »grape); the nearest word to that point is returned.

tree

apple

grape
vine

Figure 6.15 The parallelogram model for analogy problems (Rumelhart and Abrahamson,
1973): the location of

#     »
vine can be found by subtracting #   »tree from

#       »
apple and adding #       »grape.

In early work with sparse embeddings, scholars showed that sparse vector mod-
els of meaning could solve such analogy problems (Turney and Littman, 2005), but
the parallelogram method received more modern attention because of its success
with word2vec or GloVe vectors (Mikolov et al. 2013b, Levy and Goldberg 2014b,
Pennington et al. 2014). For example, the result of the expression (

#     »
king)� #     »man +

#            »woman is a vector close to #         »queen. Similarly,
#      »
Paris� #           »

France +
#     »
Italy) results in a

vector that is close to
#         »
Rome. The embedding model thus seems to be extracting rep-

resentations of relations like MALE-FEMALE, or CAPITAL-CITY-OF, or even COM-
PARATIVE/SUPERLATIVE, as shown in Fig. 6.16 from GloVe.

For a a:b::a*:b* problem, meaning the algorithm is given a, b, and a* and must
find b*, the parallelogram method is thus:

b̂⇤ = argmax
x

distance(x,a⇤ �a+b) (6.41)

with the distance function defined either as cosine or as Euclidean distance.
There are some caveats. For example, the closest value returned by the paral-

lelogram algorithm in word2vec or GloVe embedding spaces is usually not in fact
b* but one of the 3 input words or their morphological variants (i.e., cherry:red ::

Analogical relations
The classic parallelogram model of analogical reasoning 
(Rumelhart and Abrahamson 1973)

To solve: "apple is to tree as grape is to  _____"
Add tree – apple  to grape to get vine



Analogical relations via parallelogram

The parallelogram method can solve analogies with both sparse
and dense embeddings (Turney and Littman 2005, Mikolov et al.
2013b)

−−→
king−−−→man +−−−−→woman is close to −−−→queen
−−→
Paris−−−−−→France +

−−→
Italy is close to

−−−→
Rome

For a problem a : a∗ :: b : b∗, the parallelogram method is:

b̂∗ = argmin
x

distance(x , a∗ − a + b)



Structure in GloVE Embedding space



Caveats with the parallelogram method

It only seems to work for frequent words, small 
distances and certain relations (relating countries to 
capitals, or parts of speech), but not others. (Linzen
2016, Gladkova et al. 2016, Ethayarajh et al. 2019a) 

Understanding analogy is an open area of research 
(Peterson et al. 2020)



Train embeddings on different decades of historical text to see meanings shift
~30 million books, 1850-1990, Google Books data

Embeddings as a window onto historical semantics

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal 
Statistical Laws of Semantic Change. Proceedings of ACL.



Embeddings reflect cultural bias!

Ask “Paris : France :: Tokyo : x” 
◦ x = Japan

Ask “father : doctor :: mother : x” 
◦ x = nurse

Ask “man : computer programmer :: woman : x” 
◦ x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer 
programmer as woman is to homemaker? debiasing word embeddings." In NeurIPS, pp. 4349-4357. 2016.

Algorithms that use embeddings as part of e.g., hiring searches for 
programmers, might lead to bias in hiring



Historical embedding as a tool to study cultural biases

• Compute a gender or ethnic bias for each adjective: e.g., how 
much closer the adjective is to "woman" synonyms than 
"man" synonyms, or names of particular ethnicities
• Embeddings for competence adjective (smart, wise, 

brilliant, resourceful, thoughtful, logical) are biased toward 
men, a bias slowly decreasing 1960-1990

• Embeddings for dehumanizing adjectives (barbaric, 
monstrous, bizarre)  were biased toward Asians in the 
1930s, bias decreasing over the 20th century.

• These match the results of old surveys done in the 1930s

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. 
Proceedings of the National Academy of Sciences 115(16), E3635–E3644.
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