Haskell — Higher-Order Functions

Copyright (© 2013 Christian Collberg

Higher-Order Functions

@ A function is Higher-Order if it takes a function as an
argument or returns one as its result.

@ Higher-order function aren't weird; the differentiation
operation from high-school calculus is higher-order:

deriv :: (Float->Float)->Float->Float
deriv f x = (f(x+dx) - f x)/0.0001

@ Many recursive functions share a similar structure. We can
capture such “recursive patterns” in a higher-order function.

@ We can often avoid the use of explicit recursion by using
higher-order functions. This leads to functions that are
shorter, and easier to read and maintain.

2/32

Currying Revisited

@ We have already seen a number of higher-order functions. In
fact, any curried function is higher-order. Why? Well, when a
curried function is applied to one of its arguments it returns a
new function as the result.

Uh, what was this currying thing?

@ A curried function does not have to be applied to all its
arguments at once. We can supply some of the arguments,
thereby creating a new specialized function. This function
can, for example, be passed as argument to a higher-order
function.

3/32

Currying Reuvisited. . .

How is a curried function defined?

@ A curried function of n arguments (of types ti,t2, -+ ,tp)
that returns a value of type t is defined like this:

fun :: t; >ty > -+ > t, >t

@ This is sort of like defining n different functions (one for each
->). In fact, we could define these functions explicitly, but
that would be tedious:

fun; :: to > -+ > t, >t
funl ar---a, = -

fun, :: tz3 > -+ > t, >t
fun2 azg---a, = -

4/32

Currying Reuvisited. . .

Duh, how about an example?

@ Certainly. Lets define a recursive function get_ nth n xs
which returns the n:th element from the list xs:

getmth 1 (x:) = x
getnth n (_:xs) = get.nth (n-1) xs

get_nth 10 "Bartholomew" = ’e’

@ Now, let's use get nth to define functions get_second,
get_third, get_fourth, and get_fifth, without using

explicit recursion:
get_second = get.nth 2 | get_fourth = getnth 4
get_third = getnth 3 | get_fifth = getnth 5

5/32

Currying Reuvisited. . .

get_fifth "Bartholomew" = ’h’

map (getnth 3)
["mob","Sea","tar","bat"] é

Ilbart n

So, what's the type of get_second?
@ Remember the Rule of Cancellation?
@ The type of get nth is Int -> [a] -> a.

@ get_second applies get_nth to one argument. So, to get the
type of get_second we need to cancel get_nth'’s first type:
IRt -> [a] > a=[a]l > a.

6/32

Patterns of Computation

Mappings

@ Apply a function f to the elements of a list L to make a new
list L’. Example: Double the elements of an integer list.

Selections

@ Extract those elements from a list L that satisfy a predicate p
into a new list L’. Example: Extract the even elements from
an integer list.

Folds
@ Combine the elements of a list L into a single element using a

binary function f. Example: Sum up the elements in an
integer list.

7/32

The map Function

@ map takes two arguments, a function and a list. map creates a
new list by applying the function to each element of the input
list.

@ map's first argument is a function of type a -> b. The second
argument is a list of type [a]. The result is a list of type [b].

map :: (a ->b) -> [a] -> [b]
map £ [] =[]
map f (x:xs) =f x : map f xs

@ We can check the type of an object using the :type
command. Example: :type map.

8/32

The map Function. ..

map :: (a ->b) -> [a] -> [b]
map £ [] =11 _
map f (x:xs)=f x : map f xs tne [1.2.3.4]

N

inc x = x + 1 ‘IIIIII’

map inc [1,2,3,4] = [2,3,4,5] i

[inc 1,inc 2,inc 3,inc 4]

[2,3,4,5]

9/32

The map Function. ..

map :: (a -> b) -> [a] -> [b]
map f [] =[]
map f (x:xs) =f x : map f xs

map f [| =[] means: “The result of applying the function f to
the elements of an empty list is the empty list.”

map f (x:xs) = f x : map f xs means: “applying f to the list
(x:xs8) is the same as applying f to x (the first

element of the list), then applying £ to the list xs,
and then combining the results.”

10/32

The map Function. ..

Simulation:

map square [5,6] =

square 5 : map square [6] =

25 : map square [6] =
25 : (square 6 : map square []) =
26 : (36 : map square []) =

256 : B6: [1) =

25 : [36] =

[25,36]

11/32

The filter Function

@ Filter takes a predicate p and a list L as arguments. It returns
a list L’ consisting of those elements from L that satisfy p.

@ The predicate p should have the type a -> Bool, where a is
the type of the list elements.

Examples:

filter even [1..10] = [2,4,6,8,10]
filter even (map square [2..5]) =
filter even [4,9,16,25] = [4,16]
filter gtl10 [2,5,9,11,23,114]
where gt10 x = x > 10 = [11,23,114]

12/32

The filter Function..

@ We can define filter using either recursion or list
comprehension.

Using recursion:

filter :: (a -> Bool) -> [a] -> [a]
filter _ [1 = []
filter p (x:xs)

| p x = x : filter p xs

| otherwise = filter p xs

Using list comprehension:

filter :: (a -> Bool) -> [a] -> [a]
filter p xs = [x | x <- xs, p x]

13/32

The filter Function. ..

filter :: (a->Bool)->[al->[a]
fi - =
:.ther L] L] even [1,2,3,4]
filter p (x:xs)
| px=x: filter p xs \\\ ////

| otherwise = filter p xs

even 2,
even 4]

even 1,
even 3,

filter even [1,2,3,4] = [2,4]

Tr ue,
True]

[Fal se,
Fal se,

=@~ — — =

[2,4]

14/32

The filter Function. ..

@ doublePos doubles the positive integers in a list.

getEven :: [Int] -> [Int]
getEven xs = filter even xs

doublePos :: [Int] -> [Int]
doublePos xs = map dbl (filter pos xs)
where dbl x = 2 * x
pos x =x >0

Simulations:

getEven [1,2,3] = [2]

doublePos [1,2,3,4] =
map dbl (filter pos [1,2,3,4]) =
map dbl [2,4] = [4,8]

15/32

fold Functions

@ A common operation is to combine the elements of a list into
one element. Such operations are called reductions or
accumulations.

Examples:

sum [1,2,3,4,5] =

1+ @+ @+ @+ (B+0N) =15
concat ["H","i","!"] =

(an ++ ("i" ++ (u!u ++ uu))) = M"Hil®

@ Notice how similar these operations are. They both combine
the elements in a list using some binary operator (+, ++),
starting out with a “seed” value (0, "").

16/32

fold Functions. ..

@ Haskell provides a function foldr (“fold right”) which
captures this pattern of computation.

® foldr takes three arguments: a function, a seed value, and a
list.

Examples:

foldr (+) 0 [1,2,3,4,5] = 15

foldr (++) nn I:IIHII s llill s n | ll] :> IIHi!II
foldr:

foldr :: (a->b->b) > b -> [a] > b

foldr f z [] =z

foldr f z (x:xs) = f x (foldr f z xs)

17/32

fold Functions. ..

@ Note how the fold process is started by combining the last
element x, with z. Hence the name seed.

foldr(®)z[x1 - x| = (x1® (x2 @ (- - - (%0 D 2))))

@ Several functions in the standard prelude are defined using
foldr:

and,or :: [Bool]l —> Bool
and xs = foldr (&&) True xs
or xs = foldr (||) False xs

? or [True,False,False] =
foldr (||) False [True,False,False] =
True || (False || (False || False)) = True

18/32

fold Functions. ..

@ Remember that foldr binds from the right:

foldr (+) 0 [1,2,3] = (1+(2+(3+0)))

@ There is another function foldl that binds from the left:

foldl (+) 0 [1,2,3] = (((0+1)+2)+3)

@ In general:

£01dl(®)z[x1 x| = (((z B x1) B x2) D - - D xp)

19/32

fold Functions. ..

@ In the case of (+) and many other functions

f0ldl(®)z[x1---xs] = £foldr(®)z[xy---x,)

@ However, one version may be more efficient than the other.

20/32

fold Functions. ..

/////’ 6?\\\\\\ ©
X @ // \
1 / \ @ Xn
X2 @ / \
/ \\\ &) X3
x3 N / ~_
D o X0
Xn z 2 x1
foldr @ z [x1---Xn] foldl @ z [x1- - Xn]

21/32

Operator Sections

@ We've already seen that it is possible to use operators to
construct new functions:

(*2) — function that doubles its argument

(>2) — function that returns True for numbers > 2.

@ Such partially applied operators are known as operator
sections. There are two kinds:

(op a) b =Db op a
(x2) 4 =4 %2 =38
>2) 4 =4 > 2 = True

(++ n \Il") "Bart"

"Bart" ++ " \nn

22/32

Operator Sections. . .

(aop) b=aophb

(3:) [t1,2] =3 : [1,2]= [3,1,2]
(0<) 5 =0<5 = True
(1/) 5 =1/5

Examples:

(+1) — The successor function.
(/2) — The halving function.

(: [1) — The function that turns an element into a singleton
list.

More Examples:

? filter (0<) (map (+1) [-2,-1,0,1])
[1,2]

23/32

takeWhile & dropWhile

@ We've looked at the list-breaking functions drop & take:

take 2 [’a’,’b’,’c’] = [’a’,’b’]
drop 2 [’a’,’b’,’¢c’] = [’c’]

o takeWhile and dropWhile are higher-order list-breaking
functions. They take/drop elements from a list while a
predicate is true.

takeWhile even [2,4,6,5,7,4,1] =
[2,4,6]

dropWhile even [2,4,6,5,7,4,1] =
[5,7,4,1]

24/32

takeWhile & dropWhile...

takeWhile :: (a->Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)
| p x = x : takeWhile p xs
| otherwise = []

dropWhile :: (a->Bool) -> [a] -> [al
dropWhile p [1 = []
dropWhile p (x:xs)

| p x = dropWhile p xs

| otherwise = x:xs

25/32

takeWhile & dropWhile...

@ Remove initial /final blanks from a string:

dI‘OpWhile ((==) ’] ’) "|_J|_J|_JHi I " =
"Hi ! n

takeWhile ((/=) ’.’) "Hi!'_ " =
"Hi!"

26/32

Summary

@ Higher-order functions take functions as arguments, or return
a function as the result.

@ We can form a new function by applying a curried function to
some (but not all) of its arguments. This is called partial
application.

@ Operator sections are partially applied infix operators.

27/32

Summary. . .

@ The standard prelude contains many useful higher-order
functions:

map f xs creates a new list by applying the function £ to
every element of a list xs.
filter p xs creates a new list by selecting only those
elements from xs that satisfy the predicate p
(i.e. (p x) should return True).
foldr f z xs reduces a list xs down to one element, by
applying the binary function f to successive
elements, starting from the right.
scanl/scanr f z xs perform the same functions as
foldr/foldl, but instead of returning only the
ultimate value they return a list of all
intermediate results.

28/32

Exercise

Exercise (a):

@ Define the map function using a list comprehension.

Template:

map £f x = [--- | ---]

Exercise (b):
@ Use map to define a function lengthall xss which takes a

list of strings xss as argument and returns a list of their
lengths as result.

Examples:

7 lengthall ["Ay", "Caramba!"]
[2,8]

29/32

Exercise

@ Give a accumulative recursive definition of foldl.
@ Define the minimum xs function using foldr.

© Define a function sumsq n that returns the sum of the
squares of the numbers [1--- n]. Use map and foldr.

© What does the function mystery below do?
mystery xs =
foldr (++) [1 (map sing xs)

sing x = [x]

Examples:

minimum [3,4,1,5,6,3] = 1

30/32

Exercise. . .

@ Define a function zipp £ xs ys that takes a function £ and
two lists xs=[x1,--- ,x,] and ys=[y;,---,y,] as argument,
and returns the list [f x1 yy,---,f x, y,] as result.

@ If the lists are of unequal length, an error should be returned.

Examples:

zipp (+) [1,2,3] [4,5,6] = [5,7,9]
zipp (==) [1,2,3] [4,2,2] = [False,True,False]

zipp (==) [1,2,3] [4,2] = ERROR

31/32

Exercise

@ Define a function filterFirst p xs that removes the first
element of xs that does not have the property p.

Example:

filterFirst even [2,4,6,5,6,8,7] =
[2,4,6,6,8,7]

@ Use filterFirst to define a function filterLast p xs
that removes the last occurence of an element of xs without
the property p.

Example:

filterLast even [2,4,6,5,6,8,7] =
[2,4,6,5,6,8]

32/32

