Haskell — Higher-Order Functions

Copyright \odot 2013 Christian Collberg

Higher-Order Functions

- A function is Higher-Order if it takes a function as an argument or returns one as its result.
- **•** Higher-order function aren't weird; the differentiation operation from high-school calculus is higher-order:

deriv :: (Float->Float)->Float->Float deriv f $x = (f(x+dx) - f(x))/0.0001$

- Many recursive functions share a similar structure. We can capture such "recursive patterns" in a higher-order function.
- We can often avoid the use of explicit recursion by using higher-order functions. This leads to functions that are shorter, and easier to read and maintain.

We have already seen a number of higher-order functions. In fact, any curried function is higher-order. Why? Well, when a curried function is applied to one of its arguments it returns a new function as the result.

Uh, what was this currying thing?

A curried function does not have to be applied to all its arguments at once. We can supply some of the arguments, thereby creating a new specialized function. This function can, for example, be passed as argument to a higher-order function.

How is a curried function defined?

A curried function of n arguments (of types t_1, t_2, \dots, t_n) that returns a value of type t is defined like this:

fun :: t_1 -> t_2 -> \cdots -> t_n -> t

• This is sort of like defining *n* different functions (one for each ->). In fact, we could define these functions explicitly, but that would be tedious:

fun₁ :: t₂ -> \cdots -> t_n -> t fun_1 $a_2 \cdots a_n = \cdots$

fun₂ :: t_3 -> \cdots -> t_n -> t fun₂ $a_3 \cdots a_n = \cdots$

Duh, how about an example?

• Certainly. Lets define a recursive function get nth n xs which returns the n:th element from the list xs:

```
get nth 1(x: ) = xget nth n (\cdotxs) = get nth (n-1) xs
```

```
get_nth 10 "Bartholomew" \Rightarrow 'e'
```
• Now, let's use get nth to define functions get second, get third, get fourth, and get fifth, without using explicit recursion:

get second = get nth 2 get third = get nth 3 get fourth = get nth 4 get fifth = get nth 5

```
get_fifth "Bartholomew" \Rightarrow 'h'
map (get nth 3)
    ["mob","sea","tar","bat"] \Rightarrow"bart"
```
 $_$ So, what's the type of get_second? $_$

- Remember the Rule of Cancellation?
- The type of get nth is $Int \rightarrow [a] \rightarrow a$.
- o get second applies get nth to one argument. So, to get the type of get second we need to cancel get nth's first type: Int \rightarrow [a] \rightarrow a \equiv [a] \rightarrow a.

Mappings 2008 2014 2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 2022 2023 2024 20

 \bullet Apply a function f to the elements of a list L to make a new list L' . Example: Double the elements of an integer list.

Selections

 \bullet Extract those elements from a list L that satisfy a predicate p into a new list L'. Example: Extract the even elements from an integer list.

Folds Folds Folds

 \bullet Combine the elements of a list L into a single element using a binary function f . Example: Sum up the elements in an integer list.

The map Function

- map takes two arguments, a function and a list. map creates a new list by applying the function to each element of the input list.
- \bullet map's first argument is a function of type a \rightarrow b. The second argument is a list of type [a]. The result is a list of type [b].

```
map :: (a \rightarrow b) \rightarrow [a] \rightarrow [b]map f \quad \begin{bmatrix} \quad \\ \quad \end{bmatrix} \qquad \qquad = \quad \begin{bmatrix} \quad \\ \quad \end{bmatrix}map f(x:xs) = f(x : map f xs)
```
• We can check the type of an object using the : type command. Example: :type map.

The map Function. . .

map f [] = []
\nmap f (x:xs) = f x : map f xs
\ninc x = x + 1
\nmap inc [1,2,3,4]
$$
\Rightarrow
$$
 [2,3,4,5]
\n[inc 1,inc 2,inc 3,inc 4]
\n[2,3,4,5]

map :: (a -> b) -> [a] -> [b] map $f \quad [\quad] \qquad = [\quad]$ map $f(x:xs) = f(x: max f xs)$

map $f[\] = [\]$ means: "The result of applying the function f to the elements of an empty list is the empty list." map $f(x:xs) = fx$: map f xs means: "applying f to the list $(x:xs)$ is the same as applying f to x (the first element of the list), then applying f to the list xs, and then combining the results."

Simulation:

```
map square [5,6] \Rightarrowsquare 5 : map square [6] \Rightarrow25 : map square [6] \Rightarrow25 : (square 6 : map square [ ]) \Rightarrow25 : (36 : map square [ ]) \Rightarrow25 : (36 : [ ] ) \Rightarrow25 : \sqrt{36} ⇒
    [25,36]
```
The filter Function

- \bullet Filter takes a predicate p and a list L as arguments. It returns a list L' consisting of those elements from L that satisfy p .
- The predicate p should have the type $a \rightarrow$ Bool, where a is the type of the list elements.

<u>__</u> Examples: _________

filter even $[1..10] \Rightarrow [2,4,6,8,10]$ filter even (map square $[2..5]$) \Rightarrow filter even $[4, 9, 16, 25] \Rightarrow [4, 16]$ filter gt10 [2,5,9,11,23,114] where gt10 $x = x > 10 \Rightarrow [11, 23, 114]$

The filter Function. . .

We can define filter using either recursion or list comprehension.

Using recursion:

```
filter :: (a \rightarrow Boo1) \rightarrow [a] \rightarrow [a]filter [ ] = []filter p (x:xs)
   | p x = x : filter p xs| otherwise = filter p xs
```
Using list comprehension:

filter :: $(a \rightarrow Bool) \rightarrow [a] \rightarrow [a]$ filter p xs = $[x | x \leftarrow xs, p x]$

The filter Function...

```
\nfilter :: (a->Bool->[a]->[a] \nfilter _ [[] = []\nfilter _ p (x:xs)\n  | p x = x : filter p xs\n  | otherwise = filter p xs\n\nfilter even [1,2,3,4] 
$$
\Rightarrow
$$
 [2,4]\n\nfilter even [1,2,3,4]  $\Rightarrow$  [2,4]\n\n{Figure 3, even 4}\n{Figure 7\n}
```

[2,4]

• doublePos doubles the positive integers in a list.

```
getEven :: [Int] -> [Int]
getEven xs = filter even xs
doublePos :: [Int] -> [Int]
doublePos xs = map dbl (filter pos xs)
               where dbl x = 2 \cdot xpos x = x > 0Simulations:
getEven [1,2,3] \Rightarrow [2]doublePos [1,2,3,4] \Rightarrow
```
map dbl (filter pos $[1,2,3,4]) \Rightarrow$ map dbl $[2,4] \Rightarrow [4,8]$

fold Functions

A common operation is to combine the elements of a list into one element. Such operations are called reductions or accumulations.

Examples: 2008. Examples:

```
sum [1, 2, 3, 4, 5] \equiv(1 + (2 + (3 + (4 + (5 + 0)))) \Rightarrow 15concat [''H'', "i'', "!"] \equiv("H" ++ ("i" ++ ("!!" ++ "")) \Rightarrow "Hi!"
```
• Notice how similar these operations are. They both combine the elements in a list using some binary operator $(+, ++)$, starting out with a "seed" value (0, "").

fold Functions. . .

- Haskell provides a function foldr ("fold right") which captures this pattern of computation.
- **•** foldr takes three arguments: a function, a seed value, and a list.

Examples: Examples: 2008. Exam

foldr:

foldr $(+) 0 [1,2,3,4,5] \Rightarrow 15$ foldr (++) "" ["H","i","!"] ⇒ "Hi!"

foldr :: $(a->b->b) \rightarrow b \rightarrow [a] \rightarrow b$ foldr $f \, z \, \lceil \, \rceil \, = z$ foldr f z $(x:xs) = f x$ (foldr f z xs)

fold Functions. . .

• Note how the fold process is started by combining the last element x_n with z. Hence the name seed.

 $foldr(\oplus)z[x_1 \cdots x_n] = (x_1 \oplus (x_2 \oplus (\cdots (x_n \oplus z))))$

• Several functions in the standard prelude are defined using foldr:

```
and,or :: [Bool] -> Bool
and xs = foldr (\&\&) True xsor xs = foldr (||) False xs
```
? or $[True, False, False] \Rightarrow$ foldr (||) False [True,False,False] \Rightarrow True || (False || (False || False)) \Rightarrow True • Remember that foldr binds from the right:

foldr $(+)$ 0 $[1,2,3] \Rightarrow (1+(2+(3+0)))$

There is another function foldl that binds from the left: foldl $(+)$ 0 $[1,2,3] \Rightarrow (((0+1)+2)+3)$

• In general:

 $\text{fold1}(\oplus)z[x_1 \cdots x_n] = (((z \oplus x_1) \oplus x_2) \oplus \cdots \oplus x_n)$

 \bullet In the case of $(+)$ and many other functions

$$
fold1(\oplus)z[x_1\cdots x_n] = foldr(\oplus)z[x_1\cdots x_n]
$$

However, one version may be more efficient than the other.

fold Functions. . .

Operator Sections

- We've already seen that it is possible to use operators to construct new functions:
	- $(*2)$ function that doubles its argument
	- (22) function that returns True for numbers > 2 .
- Such partially applied operators are known as operator sections. There are two kinds:

 $(3:)$ $[1,2] = 3 :$ $[1,2] = [3,1,2]$ $(0<) 5 = 0 < 5 = True$ $(1/) 5 = 1/5$

Examples: 2008 and 2014 and 2016

- $(+1)$ The successor function.
- (2) The halving function.
- $(:[])$ The function that turns an element into a singleton list.

More Examples:

? filter (0<) (map (+1) [-2,-1,0,1]) [1,2]

We've looked at the list-breaking functions drop & take:

```
take 2 ['a', 'b', 'c'] \Rightarrow ['a', 'b']drop 2 ['a', 'b', 'c'] \Rightarrow ['c']
```
takeWhile and dropWhile are higher-order list-breaking functions. They take/drop elements from a list while a predicate is true.

```
takeWhile even [2,4,6,5,7,4,1] \Rightarrow[2,4,6]
dropWhile even [2,4,6,5,7,4,1] \Rightarrow[5,7,4,1]
```

```
takeWhite :: (a->Bool) \rightarrow [a] \rightarrow [a]takeWhile p [ ] = [ ]
takeWhile p (x:xs)
   | p x = x : \text{takeWhile } p x s| otherwise = [ ]
dropWhile :: (a->Bool) \rightarrow [a] \rightarrow [a]dropWhile p [ ] = [ ]
dropWhile p (x:xs)
   | p x = dropWhile p xs| otherwise = x:xs
```
• Remove initial/final blanks from a string:

```
dropWhile ((==) '') "_{\text{ulul}}Hi!" \Rightarrow"Hi!"
```
takeWhile $((/=)$ ',') "Hi! "Hi!"

- **•** Higher-order functions take functions as arguments, or return a function as the result.
- We can form a new function by applying a curried function to some (but not all) of its arguments. This is called partial application.
- Operator sections are partially applied infix operators.

Summary. . .

- The standard prelude contains many useful higher-order functions:
	- **map f xs** creates a new list by applying the function f to every element of a list xs.
	- filter **p** xs creates a new list by selecting only those elements from xs that satisfy the predicate p (i.e. (p x) should return True).
	- foldr f z xs reduces a list xs down to one element, by applying the binary function f to successive elements, starting from the right.
	- scanl/scanr f z xs perform the same functions as foldr/foldl, but instead of returning only the ultimate value they return a list of all intermediate results.

Exercise (a):

Define the map function using a list comprehension.

Template: 2008. 2009. 2010. 2010. 2010. 2010. 2011. 2012. 2012. 2012. 2012. 2013. 2014. 2016. 2017.

map f $x = [\cdots | \cdots]$

Exercise (b): <u>________________________</u>

Use map to define a function lengthall xss which takes a list of strings xss as argument and returns a list of their lengths as result.

Examples: 2008. 2008. 2014. 2015. 2016. 2017. 2018. 2019. 2017. 2018. 2019.

? lengthall ["Ay", "Caramba!"] [2,8]

Exercise

- **1** Give a accumulative recursive definition of foldl.
- 2 Define the minimum xs function using foldr.
- 3 Define a function sumsq n that returns the sum of the squares of the numbers $[1 \cdots n]$. Use map and foldr.
- 4 What does the function mystery below do?

```
mystery xs =
   foldr (++) [] (map sing xs)
sing x = [x]
```
<u>___</u>_ Examples: _______

minimum $[3,4,1,5,6,3] \Rightarrow 1$

Exercise. . .

- Define a function zipp f xs ys that takes a function f and two lists $xs=[x_1, \cdots, x_n]$ and $ys=[y_1, \cdots, y_n]$ as argument, and returns the list $[\texttt{f} \ \texttt{x}_1 \ \texttt{y}_1, \cdots, \texttt{f} \ \texttt{x}_n \ \texttt{y}_n]$ as result.
- **If the lists are of unequal length, an error should be returned.**

Examples: 2008 Contract Contract

 $zipp (+) [1,2,3] [4,5,6] \Rightarrow [5,7,9]$

zipp (==) $[1,2,3]$ $[4,2,2]$ \Rightarrow [False, True, False]

zipp (==) [1,2,3] [4,2] \Rightarrow ERROR

Define a function filterFirst p xs that removes the first element of xs that does not have the property p.

Example:

filterFirst even $[2,4,6,5,6,8,7] \Rightarrow$ [2,4,6,6,8,7]

Use filterFirst to define a function filterLast p xs that removes the last occurence of an element of xs without the property p.

Example: 2008

filterLast even $[2,4,6,5,6,8,7] \Rightarrow$ [2,4,6,5,6,8]