
Applicative Functors

September 20, 2024

Functions

• Consider the addition function:

• 1 + 1 = 2

• 2 + 2 = 4

• (+) :: Num a => a -> a -> a

Functions

• Consider the addition function:

• 1 + 1 = 2

• 2 + 2 = 4

• (+) :: Num a => a -> a -> a

Functions

• Consider the addition function:

• 1 + 1 = 2

• 2 + 2 = 4

• (+) :: Num a => a -> a -> a

Functions

• Consider the addition function:

• 1 + 1 = 2

• 2 + 2 = 4

• (+) :: Num a => a -> a -> a

Maps

• Remember maps:

• map succ [1,2] = [2,3]

• map (+) [0,2] [1,2] =
Couldn’t match expected type ‘[Integer] -> t’

with actual type ‘[Integer -> Integer]’

Relevant bindings include it :: t (bound at

<interactive>:2:1)

The function ‘map’ is applied to three arguments,

but its type ‘(Integer -> Integer -> Integer)

-> [Integer] -> [Integer -> Integer]’

has only two

In the expression: map (+) [0, 2] [1, 2]

In an equation for ‘it’: it = map (+) [0, 2] [1, 2]

Maps

• Remember maps:

• map succ [1,2] = [2,3]

• map (+) [0,2] [1,2] =
Couldn’t match expected type ‘[Integer] -> t’

with actual type ‘[Integer -> Integer]’

Relevant bindings include it :: t (bound at

<interactive>:2:1)

The function ‘map’ is applied to three arguments,

but its type ‘(Integer -> Integer -> Integer)

-> [Integer] -> [Integer -> Integer]’

has only two

In the expression: map (+) [0, 2] [1, 2]

In an equation for ‘it’: it = map (+) [0, 2] [1, 2]

Maps

• Remember maps:

• map succ [1,2] = [2,3]

• map (+) [0,2] [1,2] =

Couldn’t match expected type ‘[Integer] -> t’

with actual type ‘[Integer -> Integer]’

Relevant bindings include it :: t (bound at

<interactive>:2:1)

The function ‘map’ is applied to three arguments,

but its type ‘(Integer -> Integer -> Integer)

-> [Integer] -> [Integer -> Integer]’

has only two

In the expression: map (+) [0, 2] [1, 2]

In an equation for ‘it’: it = map (+) [0, 2] [1, 2]

Maps

• Remember maps:

• map succ [1,2] = [2,3]

• map (+) [0,2] [1,2] =
Couldn’t match expected type ‘[Integer] -> t’

with actual type ‘[Integer -> Integer]’

Relevant bindings include it :: t (bound at

<interactive>:2:1)

The function ‘map’ is applied to three arguments,

but its type ‘(Integer -> Integer -> Integer)

-> [Integer] -> [Integer -> Integer]’

has only two

In the expression: map (+) [0, 2] [1, 2]

In an equation for ‘it’: it = map (+) [0, 2] [1, 2]

Maps

• First of all, what do we expect map (+) [0,2] [1,2] to be?

• Python: [0,2] + [1,2] = [0,2,1,2]

Maps

• First of all, what do we expect map (+) [0,2] [1,2] to be?

• Python: [0,2] + [1,2] = [0,2,1,2]

Maps

• Lists as nondeterminism:

• We want to add two numbers, but we don’t know what
they are
• All we know is that we have two boxes of numbers,
[0,2] and [1,2]

• We pick a number from the first box and a number from
the second box, and add them
• What are our possible results?

• [0+1,0+2,2+1,2+2] = [1,2,3,4]

Maps

• Lists as nondeterminism:

• We want to add two numbers, but we don’t know what
they are

• All we know is that we have two boxes of numbers,
[0,2] and [1,2]

• We pick a number from the first box and a number from
the second box, and add them
• What are our possible results?

• [0+1,0+2,2+1,2+2] = [1,2,3,4]

Maps

• Lists as nondeterminism:

• We want to add two numbers, but we don’t know what
they are
• All we know is that we have two boxes of numbers,
[0,2] and [1,2]

• We pick a number from the first box and a number from
the second box, and add them
• What are our possible results?

• [0+1,0+2,2+1,2+2] = [1,2,3,4]

Maps

• Lists as nondeterminism:

• We want to add two numbers, but we don’t know what
they are
• All we know is that we have two boxes of numbers,
[0,2] and [1,2]

• We pick a number from the first box and a number from
the second box, and add them

• What are our possible results?

• [0+1,0+2,2+1,2+2] = [1,2,3,4]

Maps

• Lists as nondeterminism:

• We want to add two numbers, but we don’t know what
they are
• All we know is that we have two boxes of numbers,
[0,2] and [1,2]

• We pick a number from the first box and a number from
the second box, and add them
• What are our possible results?

• [0+1,0+2,2+1,2+2] = [1,2,3,4]

Maps

• Lists as nondeterminism:

• We want to add two numbers, but we don’t know what
they are
• All we know is that we have two boxes of numbers,
[0,2] and [1,2]

• We pick a number from the first box and a number from
the second box, and add them
• What are our possible results?

• [0+1,0+2,2+1,2+2] = [1,2,3,4]

Maps

• The function ‘map’ is applied to three arguments,

but its type ‘(Integer -> Integer -> Integer)

-> [Integer] -> [Integer -> Integer]’

has only two

• Let’s give it two arguments!
• (map (+) [0,2]) [1,2] = ([(0+),(2+)]) [1,2] =

Couldn’t match expected type ‘[Integer] -> t’

with actual type ‘[Integer -> Integer]’

Relevant bindings include it :: t (bound at

<interactive>:3:1)

The function ‘[(0 +), (2 +)]’ is applied to one

argument,

but its type ‘[Integer -> Integer]’ has none

In the expression: ([(0 +), (2 +)]) [1, 2]

In an equation for ‘it’: it = ([(0 +), (2 +)]) [1, 2]

Maps

• The function ‘map’ is applied to three arguments,

but its type ‘(Integer -> Integer -> Integer)

-> [Integer] -> [Integer -> Integer]’

has only two

• Let’s give it two arguments!

• (map (+) [0,2]) [1,2] = ([(0+),(2+)]) [1,2] =
Couldn’t match expected type ‘[Integer] -> t’

with actual type ‘[Integer -> Integer]’

Relevant bindings include it :: t (bound at

<interactive>:3:1)

The function ‘[(0 +), (2 +)]’ is applied to one

argument,

but its type ‘[Integer -> Integer]’ has none

In the expression: ([(0 +), (2 +)]) [1, 2]

In an equation for ‘it’: it = ([(0 +), (2 +)]) [1, 2]

Maps

• The function ‘map’ is applied to three arguments,

but its type ‘(Integer -> Integer -> Integer)

-> [Integer] -> [Integer -> Integer]’

has only two

• Let’s give it two arguments!
• (map (+) [0,2]) [1,2] = ([(0+),(2+)]) [1,2] =

Couldn’t match expected type ‘[Integer] -> t’

with actual type ‘[Integer -> Integer]’

Relevant bindings include it :: t (bound at

<interactive>:3:1)

The function ‘[(0 +), (2 +)]’ is applied to one

argument,

but its type ‘[Integer -> Integer]’ has none

In the expression: ([(0 +), (2 +)]) [1, 2]

In an equation for ‘it’: it = ([(0 +), (2 +)]) [1, 2]

Maps

• The function ‘map’ is applied to three arguments,

but its type ‘(Integer -> Integer -> Integer)

-> [Integer] -> [Integer -> Integer]’

has only two

• Let’s give it two arguments!
• (map (+) [0,2]) [1,2] = ([(0+),(2+)]) [1,2] =

Couldn’t match expected type ‘[Integer] -> t’

with actual type ‘[Integer -> Integer]’

Relevant bindings include it :: t (bound at

<interactive>:3:1)

The function ‘[(0 +), (2 +)]’ is applied to one

argument,

but its type ‘[Integer -> Integer]’ has none

In the expression: ([(0 +), (2 +)]) [1, 2]

In an equation for ‘it’: it = ([(0 +), (2 +)]) [1, 2]

Functors

• Functors are boxes

• That implement maps that lift normal functions (of type
a -> b) to functions over boxes (of type F a -> F b)

Functors

• Lists are boxes

• That implement maps that lift normal functions (of type
a -> b) to functions over boxes (of type [a] -> [b])

Functors

• Lists are boxes

• That implement maps that lift normal functions (of type
a -> b) to functions over boxes (of type [a] -> [b])

• But now we have functions inside of boxes (of type [a -> b])

• How do we extract these functions and apply them to a
box of type [a] to get a box of type [b]?

Functors

• Lists are boxes

• That implement maps that lift normal functions (of type
a -> b) to functions over boxes (of type [a] -> [b])

• But now we have functions inside of boxes (of type [a -> b])

• How do we extract these functions and apply them to a
box of type [a] to get a box of type [b]?

Applicative Functors

• class (Functor f) => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

Applicative Functors

• class (Functor f) => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

• pure takes a value and puts it in a box

Applicative Functors

• class (Functor f) => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

• pure takes a value and puts it in a default context

Applicative Functors

• class (Functor f) => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

• pure takes a value and puts it in a default context
• (<*>) takes a box of functions and returns a function

over boxes

Applicative Functors

• class (Functor f) => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

• pure takes a value and puts it in a default context
• (<*>) takes a function in a context and returns a

function over contexts

Lists are Applicative Functors

• instance Applicative [] where

pure x = [x]

fs <*> xs = [f x | f <- fs, x <- xs]

Lists are Applicative Functors

• [(0+),(2+)] <*> [1,2] = [f x | f <- [(0+),(2+)], x <- [1,2]]

= [(0+) 1, (0+) 2, (2+) 1, (2+) 2]

= [1,2,3,4]

Lists are Applicative Functors

• [(0+),(2+)] <*> [1,2] = [f x | f <- [(0+),(2+)], x <- [1,2]]

= [(0+) 1, (0+) 2, (2+) 1, (2+) 2]

= [1,2,3,4]

Lists are Applicative Functors

• [(0+),(2+)] <*> [1,2] = [f x | f <- [(0+),(2+)], x <- [1,2]]

= [(0+) 1, (0+) 2, (2+) 1, (2+) 2]

= [1,2,3,4]

Applicative Style

• [1,2,3,4] = [(0+),(2+)] <*> [1,2]

= (fmap (+) [0,2]) <*> [1,2]

= (+) <$> [0,2] <*> [1,2]

• f <$> x = fmap f x

• Does this remind you of anything?

Applicative Style

• [1,2,3,4] = [(0+),(2+)] <*> [1,2]

= (fmap (+) [0,2]) <*> [1,2]

= (+) <$> [0,2] <*> [1,2]

• f <$> x = fmap f x

• Does this remind you of anything?

Applicative Style

• [1,2,3,4] = [(0+),(2+)] <*> [1,2]

= (fmap (+) [0,2]) <*> [1,2]

= (+) <$> [0,2] <*> [1,2]

• f <$> x = fmap f x

• Does this remind you of anything?

Applicative Style

• [1,2,3,4] = [(0+),(2+)] <*> [1,2]

= (fmap (+) [0,2]) <*> [1,2]

= (+) <$> [0,2] <*> [1,2]

• f <$> x = fmap f x

• Does this remind you of anything?

Applicative Style

• [1,2,3,4] = [(0+),(2+)] <*> [1,2]

= (fmap (+) [0,2]) <*> [1,2]

= (+) <$> [0,2] <*> [1,2]

• f <$> x = fmap f x

• Does this remind you of anything?

Applicative Style

• 1 + 1 = 2

(+) 1 1 = 2

((+) $ 1) 1 = 2

(+) <$> [1] <*> [1] = [2]

• $ is function application, <$> is lifted function application
• liftA2 f a b = f <$> a <*> b (imported from
Control.Applicative)

Applicative Style

• 1 + 1 = 2

(+) 1 1 = 2

((+) $ 1) 1 = 2

(+) <$> [1] <*> [1] = [2]

• $ is function application, <$> is lifted function application
• liftA2 f a b = f <$> a <*> b (imported from
Control.Applicative)

Applicative Style

• 1 + 1 = 2

(+) 1 1 = 2

((+) $ 1) 1 = 2

(+) <$> [1] <*> [1] = [2]

• $ is function application, <$> is lifted function application
• liftA2 f a b = f <$> a <*> b (imported from
Control.Applicative)

Applicative Style

• 1 + 1 = 2

(+) 1 1 = 2

((+) $ 1) 1 = 2

(+) <$> [1] <*> [1] = [2]

• $ is function application, <$> is lifted function application
• liftA2 f a b = f <$> a <*> b (imported from
Control.Applicative)

Applicative Style

• 1 + 1 = 2

(+) 1 1 = 2

((+) $ 1) 1 = 2

(+) <$> [1] <*> [1] = [2]

• $ is function application, <$> is lifted function application

• liftA2 f a b = f <$> a <*> b (imported from
Control.Applicative)

Applicative Style

• 1 + 1 = 2

(+) 1 1 = 2

((+) $ 1) 1 = 2

(+) <$> [1] <*> [1] = [2]

• $ is function application, <$> is lifted function application
• liftA2 f a b = f <$> a <*> b (imported from
Control.Applicative)

IO is an Applicative Functor

• instance Applicative IO where

pure = return

a <*> b = do

f <- a

x <- b

return (f x)

• instance Functor IO where

f <$> b = do

x <- b

return (f x)

IO is an Applicative Functor

• instance Applicative IO where

pure = return

a <*> b = do

f <- a

x <- b

return (f x)

• instance Functor IO where

f <$> b = do

x <- b

return (f x)

IO is an Applicative Functor

• instance Applicative IO where

pure = return

a <*> b = do

f <- a

x <- b

return (f x)

• instance Functor IO where

f <$> b = do

x <- b

return (f x)

• Get an x from the outside world, apply f to x, and wrap it up
in an IO box

IO is an Applicative Functor

• instance Applicative IO where

pure = return

a <*> b = do

f <- a

x <- b

return (f x)

• instance Functor IO where

f <$> b = do

x <- b

return (f x)

• Get an x from the outside world, apply f to x, and wrap it up
in an IO box

• Get both an f and an x from the outside world, apply f to x,
and wrap it up in an IO box

Sequencing Actions

1. Get a line

2. Get a line

3. “Return” the lines concatenated together

• myAction = do

a <- getLine

b <- getLine

return $ a ++ b

= (++) <$> getLine <*> getLine

Sequencing Actions

1. Get a line

2. Get a line

3. “Return” the lines concatenated together

• myAction = do

a <- getLine

b <- getLine

return $ a ++ b

= (++) <$> getLine <*> getLine

Sequencing Actions

1. Get a line

2. Get a line

3. “Return” the lines concatenated together

• myAction = do

a <- getLine

b <- getLine

return $ a ++ b

= (++) <$> getLine <*> getLine

Sequencing Actions

1. Get a line

2. Get a line

3. “Return” the lines concatenated together

• myAction = do

a <- getLine

b <- getLine

return $ a ++ b

= (++) <$> getLine <*> getLine

• Get a line a, apply (++) to a (to get ((++) a)), and
wrap it up in an IO box

Sequencing Actions

1. Get a line

2. Get a line

3. “Return” the lines concatenated together

• myAction = do

a <- getLine

b <- getLine

return $ a ++ b

= (++) <$> getLine <*> getLine

• Get a line a, apply (++) to a (to get ((++) a)), and
wrap it up in an IO box
• Take ((++) a) out of the box, get another line b, apply
((++) a) to b (to get a ++ b), and wrap it up in
another IO box

Sequencing Actions

1. Get a line

2. Get a line

3. “Return” the lines concatenated together

• myAction = do

a <- getLine

b <- getLine

return $ a ++ b

= (++) <$> getLine <*> getLine

• Actions

Sequencing Actions

1. Get a line

2. Get a line

3. “Return” the lines concatenated together

• myAction = do

a <- getLine

b <- getLine

return $ a ++ b

= (++) <$> getLine <*> getLine

• What to do with the results

Sequencing Actions

• Sequencing more actions

• (\x y z -> x ++ y ++ z)

<$> getLine <*> getLine <*> getLine

= liftA3 (\x y z -> x ++ y ++ z)

getLine getLine getLine

• (\w x y z -> w ++ x ++ y ++ z)

<$> getLine <*> getLine <*> getLine <*> getLine

6= liftA4 (\w x y z -> w ++ x ++ y ++ z)

getLine getLine getLine getLine

= <interactive>:4:1: Not in scope: ‘liftA4’

Sequencing Actions

• Sequencing more actions

• (\x y z -> x ++ y ++ z)

<$> getLine <*> getLine <*> getLine

= liftA3 (\x y z -> x ++ y ++ z)

getLine getLine getLine

• (\w x y z -> w ++ x ++ y ++ z)

<$> getLine <*> getLine <*> getLine <*> getLine

6= liftA4 (\w x y z -> w ++ x ++ y ++ z)

getLine getLine getLine getLine

= <interactive>:4:1: Not in scope: ‘liftA4’

Sequencing Actions

• Sequencing more actions

• (\x y z -> x ++ y ++ z)

<$> getLine <*> getLine <*> getLine

= liftA3 (\x y z -> x ++ y ++ z)

getLine getLine getLine

• (\w x y z -> w ++ x ++ y ++ z)

<$> getLine <*> getLine <*> getLine <*> getLine

6= liftA4 (\w x y z -> w ++ x ++ y ++ z)

getLine getLine getLine getLine

= <interactive>:4:1: Not in scope: ‘liftA4’

Sequencing Actions

• Sequencing more actions

• (\x y z -> x ++ y ++ z)

<$> getLine <*> getLine <*> getLine

= liftA3 (\x y z -> x ++ y ++ z)

getLine getLine getLine

• (\w x y z -> w ++ x ++ y ++ z)

<$> getLine <*> getLine <*> getLine <*> getLine

6= liftA4 (\w x y z -> w ++ x ++ y ++ z)

getLine getLine getLine getLine

= <interactive>:4:1: Not in scope: ‘liftA4’

Sequencing Actions

• Sequencing more actions

• (\x y z -> x ++ y ++ z)

<$> getLine <*> getLine <*> getLine

= liftA3 (\x y z -> x ++ y ++ z)

getLine getLine getLine

• (\w x y z -> w ++ x ++ y ++ z)

<$> getLine <*> getLine <*> getLine <*> getLine

6= liftA4 (\w x y z -> w ++ x ++ y ++ z)

getLine getLine getLine getLine

= <interactive>:4:1: Not in scope: ‘liftA4’

Sequencing Actions

• Sequencing an arbitrary number of actions

• sequenceA [getLine, getLine, getLine]

Sequencing Actions

• Sequencing an arbitrary number of actions

• sequenceA [getLine, getLine, getLine]

Sequencing Actions

• Sequencing an arbitrary number of actions
• sequenceA [getLine, getLine, getLine]

• sequenceA :: (Applicative f) => [f a] -> f [a]

• Takes a list of actions and returns an action that contains a
list of results

• What to do with the results

• (foldr (++) "")

<$> sequenceA [getLine, getLine, getLine]

Sequencing Actions

• Sequencing an arbitrary number of actions
• sequenceA [getLine, getLine, getLine]

• sequenceA :: (Applicative f) => [f a] -> f [a]

• Takes a list of actions and returns an action that contains a
list of results

• What to do with the results

• (foldr (++) "")

<$> sequenceA [getLine, getLine, getLine]

Sequencing Actions

• Sequencing an arbitrary number of actions
• sequenceA [getLine, getLine, getLine]

• sequenceA :: (Applicative f) => [f a] -> f [a]

• Takes a list of actions and returns an action that contains a
list of results

• What to do with the results

• (foldr (++) "")

<$> sequenceA [getLine, getLine, getLine]

Sequencing Actions

• Sequencing an arbitrary number of actions
• sequenceA [getLine, getLine, getLine]

• sequenceA :: (Applicative f) => [f a] -> f [a]

• Takes a list of actions and returns an action that contains a
list of results

• What to do with the results

• (foldr (++) "")

<$> sequenceA [getLine, getLine, getLine]

Sequencing Actions

• Sequencing an arbitrary number of actions
• sequenceA [getLine, getLine, getLine]

• sequenceA :: (Applicative f) => [f a] -> f [a]

• Takes a list of actions and returns an action that contains a
list of results

• What to do with the results

• (foldr (++) "")

<$> sequenceA [getLine, getLine, getLine]

• See Chapter 6.5 for folds

Applicative Laws

• Identity: pure id <*> v = v

• Composition: pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

• Compare to functor laws:

• Identity: id <$> v = v

• Composition: (.) u v <$> w = u <$> (v <$> w)

• Compare to definitions of id and .:

• Identity: id $ v = v

• Composition: (.) u v $ w = u $ (v $ w)

Applicative Laws

• Identity: pure id <*> v = v

• Composition: pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

• Compare to functor laws:

• Identity: id <$> v = v

• Composition: (.) u v <$> w = u <$> (v <$> w)

• Compare to definitions of id and .:

• Identity: id $ v = v

• Composition: (.) u v $ w = u $ (v $ w)

Applicative Laws

• Identity: pure id <*> v = v

• Composition: pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

• Compare to functor laws:

• Identity: id <$> v = v

• Composition: (.) u v <$> w = u <$> (v <$> w)

• Compare to definitions of id and .:

• Identity: id $ v = v

• Composition: (.) u v $ w = u $ (v $ w)

Applicative Laws

• Identity: pure id <*> v = v

• Composition: pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

• Compare to functor laws:

• Identity: id <$> v = v

• Composition: (.) u v <$> w = u <$> (v <$> w)

• Compare to definitions of id and .:

• Identity: id $ v = v

• Composition: (.) u v $ w = u $ (v $ w)

Applicative Laws

• Identity: pure id <*> v = v

• Composition: pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

• Homomorphism: pure f <*> pure x = pure (f x)

• Interchange: u <*> pure y = pure ($ y) <*> u

• Bonus: pure f <*> x = fmap f x = f <$> x

Applicative Laws

• Identity: pure id <*> v = v

• Composition: pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

• Homomorphism: pure f <*> pure x = pure (f x)

• Interchange: u <*> pure y = pure ($ y) <*> u

• Bonus: pure f <*> x = fmap f x = f <$> x

Applicative Laws

• Identity: pure id <*> v = v

• Composition: pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

• Homomorphism: pure f <*> pure x = pure (f x)

• Interchange: u <*> pure y = pure ($ y) <*> u

• Bonus: pure f <*> x = fmap f x = f <$> x

Applicative Functors

• Other examples of applicative functors:

• Maybe

• Functions ((->) r)

Applicative Functors

• Other examples of applicative functors:

• Maybe

• Functions ((->) r)

Applicative Functors

• Other examples of applicative functors:

• Maybe

• Functions ((->) r)

Applicative Functors

• Functors are boxes

• That implement maps that lift normal functions (of type
a -> b) to functions over boxes (of type F a -> F b)

• Applicative functors are boxes that support function
application

• If you have a normal function (a -> b), you can put it in
a box (F (a -> b)), and apply it to a box (F a) to get
another box (F b)

Applicative Functors

• Functors are boxes

• That implement maps that lift normal functions (of type
a -> b) to functions over boxes (of type F a -> F b)

• Applicative functors are boxes that support function
application

• If you have a normal function (a -> b), you can put it in
a box (F (a -> b)), and apply it to a box (F a) to get
another box (F b)

Applicative Functors

• Functors are boxes

• That implement maps that lift normal functions (of type
a -> b) to functions over boxes (of type F a -> F b)

• Applicative functors are boxes that support function
application

• If you have a normal function (a -> b), you can put it in
a box (F (a -> b)), and apply it to a box (F a) to get
another box (F b)

Applicative Functors

• Functors represent context

• That implement maps that lift normal functions (of type
a -> b) to functions over context (of type F a -> F b)

• Applicative functors represent contexts that support function
application

• If you have a normal function (a -> b), you can put it in
a context (F (a -> b)), and apply it to a context (F a)
to get another context (F b)

