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Maps

• Remember maps:

• map succ [1,2] = [2,3]

• map (+) [0,2] [1,2] =
Couldn’t match expected type ‘[Integer] -> t’

with actual type ‘[Integer -> Integer]’

Relevant bindings include it :: t (bound at

<interactive>:2:1)

The function ‘map’ is applied to three arguments,

but its type ‘(Integer -> Integer -> Integer)

-> [Integer] -> [Integer -> Integer]’

has only two

In the expression: map (+) [0, 2] [1, 2]

In an equation for ‘it’: it = map (+) [0, 2] [1, 2]
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Maps

• The function ‘map’ is applied to three arguments,

but its type ‘(Integer -> Integer -> Integer)

-> [Integer] -> [Integer -> Integer]’

has only two

• Let’s give it two arguments!
• (map (+) [0,2]) [1,2] = ([(0+),(2+)]) [1,2] =

Couldn’t match expected type ‘[Integer] -> t’

with actual type ‘[Integer -> Integer]’

Relevant bindings include it :: t (bound at

<interactive>:3:1)

The function ‘[(0 +), (2 +)]’ is applied to one

argument,

but its type ‘[Integer -> Integer]’ has none

In the expression: ([(0 +), (2 +)]) [1, 2]

In an equation for ‘it’: it = ([(0 +), (2 +)]) [1, 2]
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Applicative Functors

• class (Functor f) => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

• pure takes a value and puts it in a default context
• (<*>) takes a function in a context and returns a

function over contexts
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fs <*> xs = [f x | f <- fs, x <- xs]
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• $ is function application, <$> is lifted function application
• liftA2 f a b = f <$> a <*> b (imported from
Control.Applicative)
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• instance Functor IO where
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• myAction = do

a <- getLine

b <- getLine

return $ a ++ b

= (++) <$> getLine <*> getLine
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Sequencing Actions

1. Get a line

2. Get a line

3. “Return” the lines concatenated together

• myAction = do

a <- getLine

b <- getLine

return $ a ++ b

= (++) <$> getLine <*> getLine

• What to do with the results
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Sequencing Actions

• Sequencing an arbitrary number of actions
• sequenceA [getLine, getLine, getLine]

• sequenceA :: (Applicative f) => [f a] -> f [a]

• Takes a list of actions and returns an action that contains a
list of results

• What to do with the results

• (foldr (++) "")

<$> sequenceA [getLine, getLine, getLine]

• See Chapter 6.5 for folds
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• Composition: (.) u v <$> w = u <$> (v <$> w)

• Compare to definitions of id and .:

• Identity: id $ v = v

• Composition: (.) u v $ w = u $ (v $ w)
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Applicative Functors

• Functors represent context

• That implement maps that lift normal functions (of type
a -> b) to functions over context (of type F a -> F b)

• Applicative functors represent contexts that support function
application

• If you have a normal function (a -> b), you can put it in
a context (F (a -> b)), and apply it to a context (F a)
to get another context (F b)


