
Applicative Functors in Language and Intensional
Constructs

James Pustejovsky

Brandeis University

 September 27, 2024

Today’s Plan

I Applicative Functors in Language

I Intensional Constructs
I Modal Logic

I Syntax
I Semantics

I (we’ll see how far we get...)

Today’s Plan

I Applicative Functors in Language

I Intensional Constructs
I Modal Logic

I Syntax
I Semantics

I (we’ll see how far we get...)

Functions as Functors

instance Functor ((->) r) where

fmap f g = (\x -> f (g x))

I (Technically, functions that take arguments of type r are
functors, where r is any type)

I A function of type r -> a can be seen as an object (of type
a) that depends on the context (of type r)
I Can also be seen as a box containing the eventual result of

running the function

I Note that fmap is just function composition
I fmap = (.)

Functions as Functors

instance Functor ((->) r) where

fmap f g = (\x -> f (g x))

I (Technically, functions that take arguments of type r are
functors, where r is any type)

I A function of type r -> a can be seen as an object (of type
a) that depends on the context (of type r)
I Can also be seen as a box containing the eventual result of

running the function

I Note that fmap is just function composition
I fmap = (.)

Functions as Functors

instance Functor ((->) r) where

fmap f g = (\x -> f (g x))

I (Technically, functions that take arguments of type r are
functors, where r is any type)

I A function of type r -> a can be seen as an object (of type
a) that depends on the context (of type r)
I Can also be seen as a box containing the eventual result of

running the function

I Note that fmap is just function composition
I fmap = (.)

Functions as Applicative Functors

instance Applicative ((->) r) where

pure x = (_ -> x)

f <*> g = \x -> f x (g x)

I pure takes a value (of type a) and makes a “default” function
(of type r -> a)
I The most “default” function is the one that, no matter the

argument, always outputs that value

I <*> is a function that
I Takes functions f :: r -> a -> b and g :: r -> a, and

a context x :: r
I Applies both f and g to x (to get (f x) :: a -> b and

(g x) :: a)
I Applies (f x) to (g x) to get a result of type b

I <*> :: (r -> a -> b) -> (r -> a) -> r -> b

Functions as Applicative Functors

instance Applicative ((->) r) where

pure x = (_ -> x)

f <*> g = \x -> f x (g x)

I pure takes a value (of type a) and makes a “default” function
(of type r -> a)
I The most “default” function is the one that, no matter the

argument, always outputs that value

I <*> is a function that
I Takes functions f :: r -> a -> b and g :: r -> a, and

a context x :: r
I Applies both f and g to x (to get (f x) :: a -> b and

(g x) :: a)
I Applies (f x) to (g x) to get a result of type b

I <*> :: (r -> a -> b) -> (r -> a) -> r -> b

Functions as Applicative Functors

instance Applicative ((->) r) where

pure x = (_ -> x)

f <*> g = \x -> f x (g x)

I pure takes a value (of type a) and makes a “default” function
(of type r -> a)
I The most “default” function is the one that, no matter the

argument, always outputs that value

I <*> is a function that
I Takes functions f :: r -> a -> b and g :: r -> a, and

a context x :: r
I Applies both f and g to x (to get (f x) :: a -> b and

(g x) :: a)
I Applies (f x) to (g x) to get a result of type b

I <*> :: (r -> a -> b) -> (r -> a) -> r -> b

Functions as Applicative Functors

instance Applicative ((->) r) where

pure x = (_ -> x)

f <*> g = \x -> f x (g x)

I pure takes a value (of type a) and makes a “default” function
(of type r -> a)
I The most “default” function is the one that, no matter the

argument, always outputs that value

I <*> is a function that
I Alternatively, takes a function f :: r -> a -> b and lifts it

to a function (<*>) f :: (r -> a) -> r -> b

Applies both f and g to x (to get (f x) :: a -> b and
(g x) :: a)
Applies (f x) to (g x) to get a result of type b

I <*> :: (r -> a -> b) -> (r -> a) -> r -> b

Applicative Functors in Language

I Let r = World
I Worlds are contexts, both in the linguistic sense and in the

computational sense

I Consider intensional verb phrases/common nouns, which have
type (World -> Entity) -> World -> Bool (or
IEntity -> IBool)
I (iVP Laughed), (iCN Girl), etc.

I Our model contains intensional relations of type
World -> Entity -> Bool
I iLaugh, iGirl, etc.

Applicative Functors in Language

I Let r = World
I Worlds are contexts, both in the linguistic sense and in the

computational sense

I Consider intensional verb phrases/common nouns, which have
type (World -> Entity) -> World -> Bool (or
IEntity -> IBool)
I (iVP Laughed), (iCN Girl), etc.

I Our model contains intensional relations of type
World -> Entity -> Bool
I iLaugh, iGirl, etc.

Applicative Functors in Language

iVP :: VP -> IEntity -> IBool

iVP Laughed = \ x i -> iLaugh i (x i)

I Given functions iLaugh :: World -> Entity -> Bool

and x :: World -> Entity, apply both iLaugh and x to
the same context i :: World

I Then apply (iLaugh i) to (x i)

Applicative Functors in Language

iProp :: (World -> Entity -> Bool) -> IEntity -> IBool

iProp x = \ y i -> x i (y i)

I “This function can be used for automating the lift of
extensional CN and VP denotations to intensional ones.”

vpINT :: VP -> World -> Entity -> Bool

vpINT Laughed = iLaugh

vpINT Shuddered = iShudder

intensVP :: VP -> IEntity -> IBool

intensVP = iProp . vpINT

I “This defines the same function as iVP.”

Applicative Functors in Language

iProp :: (World -> Entity -> Bool) -> IEntity -> IBool

iProp x = \ y i -> x i (y i)

I “This function can be used for automating the lift of
extensional CN and VP denotations to intensional ones.”

vpINT :: VP -> World -> Entity -> Bool

vpINT Laughed = iLaugh

vpINT Shuddered = iShudder

intensVP :: VP -> IEntity -> IBool

intensVP = iProp . vpINT

I “This defines the same function as iVP.”

Applicative Functors in Language

I But note that iProp = (<*>)

I This means that we can write

iVP Laughed = \ x -> iLaugh <*> x

I Alternatively, we can write

iVP Laughed = iProp iLaugh

Applicative Functors in Language

I <*> (or iProp) takes a function f :: r -> a -> b and
lifts it to a function iProp f :: (r -> a) -> r -> b
I Can we do the reverse, i.e., can we take a function

iProp f :: (r -> a) -> r -> b and lower it to a
function f :: r -> a -> b?

Applicative Functors in Language

eProp :: (IEntity -> IBool) -> World -> Entity -> Bool

eProp y = \ j x -> y (\k -> x) j

I eProp takes a function y :: (IEntity -> IBool), and
returns a function that takes a world j :: World and an
entity x :: Entity, and applies y to “x” and j
I y takes an IEntity as input, while x is an Entity

I We lift x to the type IEntity, by making a “default” function
(\k -> x)

I Note that (\k -> x) = pure x

Applicative Functors in Language

eProp :: (IEntity -> IBool) -> World -> Entity -> Bool

eProp y j = \ x -> y (pure x) j

I eProp takes a function y :: (IEntity -> IBool) and a
world j :: World, and returns a function that takes an
entity x :: Entity, and applies y to pure x and j

Applicative Functors in Language

I Consider intensional determiners, which have type
(IEntity -> IBool) -> (IEntity -> IBool) -> IBool

I But any and filter take relations of type Entity -> Bool

iDET Some p q = \ i -> any (\x -> q (\j -> x) i)

(filter (\x -> p (\j -> x) i) entities)

I We lower p and q from type IEntity -> IBool to type
Entity -> Bool

Applicative Functors in Language

I Consider intensional determiners, which have type
(IEntity -> IBool) -> (IEntity -> IBool) -> IBool

I But any and filter take relations of type Entity -> Bool

iDET Some p q = \ i -> any (\x -> q (\j -> x) i)

(filter (\x -> p (\j -> x) i) entities)

I We lower p and q from type IEntity -> IBool to type
Entity -> Bool

Applicative Functors in Language

I But note that (\x -> q (\j -> x) i) = eProp q i

I This means that we can write

iDET Some p q = \ i -> any (eProp q i)

(filter (eProp p i) entities)

Applicative Functors in Language

I Warning! Not every function can be “extensionalized” in this
manner
I Basically, eProp loses information

I (World -> Entity) -> World -> Bool contains two
instances of World, while World -> Entity -> Bool

contains one

I We were able to get away with it because all of our intensional
predicates were of the form iProp p (or \ x -> p <*> x)
I eProp (iProp p) = p, but it is not necessarily the case that

iProp (eProp p) = p
I See van Eijck and Unger Chapter 8.4 for more details

Applicative Functors in Language

I Warning! Not every function can be “extensionalized” in this
manner
I Basically, eProp loses information

I (World -> Entity) -> World -> Bool contains two
instances of World, while World -> Entity -> Bool

contains one

I We were able to get away with it because all of our intensional
predicates were of the form iProp p (or \ x -> p <*> x)
I eProp (iProp p) = p, but it is not necessarily the case that

iProp (eProp p) = p
I See van Eijck and Unger Chapter 8.4 for more details

Intensional Constructs

I “A fake princess is someone who in actual fact is not a
princess, but pretends to be one. How does one model such
pretense? Let us say that in some other world she is a
princess.”

iADJ :: ADJ -> (IEntity -> IBool) -> IEntity -> IBool

iADJ Fake = \ p x i ->

not (p x i) && any (\ j -> p x j) worlds

Intensional Constructs

I “A fake princess is someone who in actual fact is not a
princess, but pretends to be one. How does one model such
pretense? Let us say that in some other world she is a
princess.”

iADJ :: ADJ -> (IEntity -> IBool) -> IEntity -> IBool

iADJ Fake = \ p x i ->

not (p x i) && any (\ j -> p x j) worlds

Intensional Constructs

I “Attitude verbs like want and hope also give rise to
intensional constructs. Such verbs combine with infinitives to
form complex VPs.”

iINF :: INF -> IEntity -> IBool

iINF Laugh = \ x i -> iLaugh i (x i)

iINF Shudder = \ x i -> iShudder i (x i)

iINF (INF tinf np) = \ s -> iNP np (\ o -> iTINF tinf s o)

iTINF :: TINF -> IEntity -> IEntity -> IBool

iTINF Catch = \x y w -> iCatch w (x w) (y w)

I Note that, e.g., iINF Laugh = \ x -> iLaugh <*> x and
iTINF Catch = \x y -> iCatch <*> x <*> y

Intensional Constructs

I “Attitude verbs like want and hope also give rise to
intensional constructs. Such verbs combine with infinitives to
form complex VPs.”

iINF :: INF -> IEntity -> IBool

iINF Laugh = \ x i -> iLaugh i (x i)

iINF Shudder = \ x i -> iShudder i (x i)

iINF (INF tinf np) = \ s -> iNP np (\ o -> iTINF tinf s o)

iTINF :: TINF -> IEntity -> IEntity -> IBool

iTINF Catch = \x y w -> iCatch w (x w) (y w)

I Note that, e.g., iINF Laugh = \ x -> iLaugh <*> x and
iTINF Catch = \x y -> iCatch <*> x <*> y

Intensional Constructs

I “An attitude towards an intensional property should map that
property to a property that holds in all worlds where the
attitude is realized. So for each agent in the model that can
hold attitudes, we have to identify the set of worlds for that
attitude: desired worlds or hoped-for worlds. Let us assume
that in all worlds everyone wants w2 or w3 and everyone hopes
for w3.”

iAttit :: AV -> IEntity -> IBool

iAttit Wanted x = \i -> elem i [W2,W3]

iAttit Hoped x = \i -> i == W3

I Note that this is greatly simplified!

Intensional Constructs

I “An attitude towards an intensional property should map that
property to a property that holds in all worlds where the
attitude is realized. So for each agent in the model that can
hold attitudes, we have to identify the set of worlds for that
attitude: desired worlds or hoped-for worlds. Let us assume
that in all worlds everyone wants w2 or w3 and everyone hopes
for w3.”

iAttit :: AV -> IEntity -> IBool

iAttit Wanted x = \i -> elem i [W2,W3]

iAttit Hoped x = \i -> i == W3

I Note that this is greatly simplified!

Intensional Constructs

I “To check whether a property holds under an attitude we
check whether the property holds in all of the designated
attitude worlds.”

iAV :: AV -> (IEntity -> IBool) -> (IEntity -> IBool)

iAV Wanted p = \ x i ->

and [p x j | j <- worlds, iAttit Wanted x j]

iAV Hoped p = \ x i ->

and [p x j | j <- worlds, iAttit Hoped x j]

Intensional Constructs

I “To check whether a property holds under an attitude we
check whether the property holds in all of the designated
attitude worlds.”

iAV :: AV -> (IEntity -> IBool) -> (IEntity -> IBool)

iAV Wanted p = \ x i ->

and [p x j | j <- worlds, iAttit Wanted x j]

iAV Hoped p = \ x i ->

and [p x j | j <- worlds, iAttit Hoped x j]

Intensional Constructs

I “Whether or not a statement is true in some model depends
on what is the actual world in that model.
I The actual world is the world where we evaluate.

I To check whether a statement is necessarily true in an
intensional model, we have to check whether it is true in all
possible worlds.

I A statement is contingently true if it is true, but it ain’t
necessarily so: there exists a world where that statement is
false.”

iJudgement :: Judgement -> IBool

iJudgement (IsTrue s) = \ i -> iSent s i

iJudgement (IsNec s) = \ i ->

all (\j -> iSent s j) worlds

iJudgement (IsCont s) = \ i ->

iSent s i && not (all (\j -> iSent s j) worlds)

Intensional Constructs

I “Whether or not a statement is true in some model depends
on what is the actual world in that model.
I The actual world is the world where we evaluate.

I To check whether a statement is necessarily true in an
intensional model, we have to check whether it is true in all
possible worlds.

I A statement is contingently true if it is true, but it ain’t
necessarily so: there exists a world where that statement is
false.”

iJudgement :: Judgement -> IBool

iJudgement (IsTrue s) = \ i -> iSent s i

iJudgement (IsNec s) = \ i ->

all (\j -> iSent s j) worlds

iJudgement (IsCont s) = \ i ->

iSent s i && not (all (\j -> iSent s j) worlds)

