
Computational Semantics
Day 1: Getting Started with Haskell + Inference

Engine for NL

Jan van Eijck1 & Christina Unger2

1CWI, Amsterdam, and UiL-OTS, Utrecht, The Netherlands
2CITEC, Bielefeld University, Germany

ESSLLI 2011, Ljubljana

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 1 / 82

The formal study of natural language

The formal study of natural language

1916 Ferdinand de Saussure proposes that natural language may
be analyzed as a formal system.
1957 Noam Chomsky proposes to define
natural languages as sets of grammatical
sentences, and to study their structure with
formal means.

• The ability of language users to recognize
members of this set is called competence.

• Goal: Build a model of our linguistic
knowledge, abstracting from language
performance (speech disabilities, memory
limitations, errors, etc). Such a model is
called grammar.

1970 Richard Montague proposes to extend the Chomskyan
program to semantics and pragmatics.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 6 / 82

The formal study of natural language

The birth of formal semantics

There is in my opinion no important
theoretical difference between natural
languages and the artificial languages
of logicians; indeed, I consider it pos-
sible to comprehend the syntax and
semantics of both kinds of languages
within a single natural and mathemat-
ically precise theory.

(Richard Montague, 1930–1971)

In fact, when we descibe grammars of fragments of natural languages in a
formal way, we are doing the same as when describing formal languages.
(And this allows for a relatively straightforward implementation.)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 7 / 82

The formal study of natural language

Organization of grammar

• Phonology investigates the smallest meaning-distinguishing units
(speech sounds) and how they are combined into the smallest
meaning-carrying units (morphemes).

• Morphology is concerned with how morphemes are combined into
words.

• Syntax studies how words are combined into phrases and sentences.

• Semantics investigates the meanings of words, phrases and
sentences, and how the meaning of a complex expression can be
constructed from the meanings of its parts.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 8 / 82

The formal study of natural language

Our focus

We will concentrate on meaning and form at the level of phrases and
sentences, i.e. start with words as basic building blocks.

Example:

N

ADJ
dotted

N
cow −→

dotted cow

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 9 / 82

Functional programming with Haskell

A short history of Haskell

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 11 / 82

Functional programming with Haskell

A short history of Haskell

In the 80s, efforts of researchers working on functional programming were
scattered across many languages (Lisp, SASL, Miranda, ML,. . .).

In 1987 a dozen functional programmers decided to meet in order to
reduce unnecessary diversity in functional programming languages by
designing a common language that is

• based on ideas that enjoy a wide consensus

• suitable for further language research as well as applications, including
building large systems

• freely available

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 12 / 82

Functional programming with Haskell

A short history of Haskell

In 1990, they published the first Haskell specification, named after the
logician and mathematician Haskell B. Curry (1900-1982).

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 13 / 82

Functional programming with Haskell

Haskell is functional

A program consists entirely of functions.

• The main program itself is a function with the program’s input as
argument and the program’s output as result.

• Typically the main function is defined in terms of other functions,
which in turn are defined in terms of still more functions, until at the
bottom level the functions are language primitives.

Running a Haskell program consists in evaluating expressions (basically
functions applied to arguments).

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 19 / 82

Functional programming with Haskell

A shift in thinking

Imperative thinking:

• Variables are pointers to storage locations whose value can be
updated all the time.

• You give a sequence of commands telling the computer what to do
step by step.

Examples:

• initialize a variable examplelist of type integer list,
then add 1, then add 2, then add 3

• in order to compute the factorial of n, initialize an integer variable f

as 1, then for all i from 1 to n, set f to f×i

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 20 / 82

Functional programming with Haskell

A shift in thinking

Functional thinking:

• Variables are identifiers for an immutable, persistent value.

• You tell the computer what things are.

Examples:

• examplelist is a list of integers containing the elements
1, 2, and 3

• the factorial of n is the product of all integers from 1 to n

factorial :: Int -> Int

factorial n = product [1..n]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 21 / 82

Functional programming with Haskell

A shift in thinking

Functional thinking:

• Variables are identifiers for an immutable, persistent value.

• You tell the computer what things are.

Examples:

• examplelist is a list of integers containing the elements
1, 2, and 3

• the factorial of n is the product of all integers from 1 to n

factorial :: Int -> Int

factorial n = product [1..n]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 21 / 82

Functional programming with Haskell

A shift in thinking

Stop thinking in variable assignments, sequences and loops.

Start thinking in functions, immutable values and recursion.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 22 / 82

Functional programming with Haskell

Why use Haskell?

• Haskell allows for abstract, high order programming.
(Ideally, more thinking and less writing and debugging.)

• Haskell is based on the lambda calculus, therefore the step from
formal semantics theory to implementation is very small.

• Haskell offers you a new perspective on programming, it is powerful,
and it is fun.

• The type system behind Haskell is close related to the type system
behind Montague grammar.

• Your Haskell understanding will influence the way you understand
natural language semantics.

Haskell is rich enough to be useful. But above all, Haskell is a language in
which people play. In the end, we want to infect your brain, not your hard
drive.

(Simon Peyton-Jones)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 24 / 82

Functional programming with Haskell

Why use Haskell?

• Haskell allows for abstract, high order programming.
(Ideally, more thinking and less writing and debugging.)

• Haskell is based on the lambda calculus, therefore the step from
formal semantics theory to implementation is very small.

• Haskell offers you a new perspective on programming, it is powerful,
and it is fun.

• The type system behind Haskell is close related to the type system
behind Montague grammar.

• Your Haskell understanding will influence the way you understand
natural language semantics.

Haskell is rich enough to be useful. But above all, Haskell is a language in
which people play. In the end, we want to infect your brain, not your hard
drive.

(Simon Peyton-Jones)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 24 / 82

Functional programming with Haskell

Why use Haskell?

• Haskell allows for abstract, high order programming.
(Ideally, more thinking and less writing and debugging.)

• Haskell is based on the lambda calculus, therefore the step from
formal semantics theory to implementation is very small.

• Haskell offers you a new perspective on programming, it is powerful,
and it is fun.

• The type system behind Haskell is close related to the type system
behind Montague grammar.

• Your Haskell understanding will influence the way you understand
natural language semantics.

Haskell is rich enough to be useful. But above all, Haskell is a language in
which people play. In the end, we want to infect your brain, not your hard
drive.

(Simon Peyton-Jones)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 24 / 82

Functional programming with Haskell

Why use Haskell?

• Haskell allows for abstract, high order programming.
(Ideally, more thinking and less writing and debugging.)

• Haskell is based on the lambda calculus, therefore the step from
formal semantics theory to implementation is very small.

• Haskell offers you a new perspective on programming, it is powerful,
and it is fun.

• The type system behind Haskell is close related to the type system
behind Montague grammar.

• Your Haskell understanding will influence the way you understand
natural language semantics.

Haskell is rich enough to be useful. But above all, Haskell is a language in
which people play. In the end, we want to infect your brain, not your hard
drive.

(Simon Peyton-Jones)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 24 / 82

Functional programming with Haskell

Why use Haskell?

• Haskell allows for abstract, high order programming.
(Ideally, more thinking and less writing and debugging.)

• Haskell is based on the lambda calculus, therefore the step from
formal semantics theory to implementation is very small.

• Haskell offers you a new perspective on programming, it is powerful,
and it is fun.

• The type system behind Haskell is close related to the type system
behind Montague grammar.

• Your Haskell understanding will influence the way you understand
natural language semantics.

Haskell is rich enough to be useful. But above all, Haskell is a language in
which people play. In the end, we want to infect your brain, not your hard
drive.

(Simon Peyton-Jones)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 24 / 82

Functional programming with Haskell

Why use Haskell?

• Haskell allows for abstract, high order programming.
(Ideally, more thinking and less writing and debugging.)

• Haskell is based on the lambda calculus, therefore the step from
formal semantics theory to implementation is very small.

• Haskell offers you a new perspective on programming, it is powerful,
and it is fun.

• The type system behind Haskell is close related to the type system
behind Montague grammar.

• Your Haskell understanding will influence the way you understand
natural language semantics.

Haskell is rich enough to be useful. But above all, Haskell is a language in
which people play. In the end, we want to infect your brain, not your hard
drive.

(Simon Peyton-Jones)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 24 / 82

Functional programming with Haskell

Resources

• For everything Haskell-related: haskell.org.

• Tutorials:
• Chapter 3 of our book
• Real World Haskell
book.realworldhaskell.org/read/

• Learn you a Haskell for great good
learnyouahaskell.com

• A gentle introduction to Haskell
haskell.org/tutorial

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 25 / 82

http://haskell.org
http://book.realworldhaskell.org/read/
http://learnyouahaskell.com
http://haskell.org/tutorial

Functional programming with Haskell

Getting started

Get the Haskell Platform:

• http://hackage.haskell.org/platform/

This includes the Glasgow Haskell Compiler (GHC) together with standard
libraries and the interactive environment GHCi.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 26 / 82

http://hackage.haskell.org/platform/

Functional programming with Haskell

Haskell as a Calculator

Start the interpreter:

lucht:cmpsem jve$ ghci

GHCi, version 6.12.3: http://www.haskell.org/ghc/ :? for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

Loading package ffi-1.0 ... linking ... done.

Prelude>

GHCi can be used to interactively evaluate expressions.

Prelude> 2 + 3

Prelude> 2 + 3 * 4

Prelude> 2^10

Prelude> (42 - 10) / 2

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 27 / 82

Functional programming with Haskell

Haskell as a Calculator

Start the interpreter:

lucht:cmpsem jve$ ghci

GHCi, version 6.12.3: http://www.haskell.org/ghc/ :? for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

Loading package ffi-1.0 ... linking ... done.

Prelude>

GHCi can be used to interactively evaluate expressions.

Prelude> 2 + 3

Prelude> 2 + 3 * 4

Prelude> 2^10

Prelude> (42 - 10) / 2

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 27 / 82

Functional programming with Haskell

Haskell as a Calculator

Start the interpreter:

lucht:cmpsem jve$ ghci

GHCi, version 6.12.3: http://www.haskell.org/ghc/ :? for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

Loading package ffi-1.0 ... linking ... done.

Prelude>

GHCi can be used to interactively evaluate expressions.

Prelude> 2 + 3

Prelude> 2 + 3 * 4

Prelude> 2^10

Prelude> (42 - 10) / 2

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 27 / 82

Functional programming with Haskell

Your first Haskell program

1 Write the following code to a text file and save it as first.hs:

double :: Int -> Int

double n = 2 * n

2 Inside GHCi, you can load the program with :l first.hs

(or by running ghci first.hs).
With :r you can reload it if you change something.

3 Now you can evaluate expressions like double 5,
double (2+3), and double (double 5).

4 With :t you can ask GHCi about the type of an expression.

5 Leave the interactive environment with :q.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 28 / 82

Functional programming with Haskell

Your first Haskell program

1 Write the following code to a text file and save it as first.hs:

double :: Int -> Int

double n = 2 * n

2 Inside GHCi, you can load the program with :l first.hs

(or by running ghci first.hs).
With :r you can reload it if you change something.

3 Now you can evaluate expressions like double 5,
double (2+3), and double (double 5).

4 With :t you can ask GHCi about the type of an expression.

5 Leave the interactive environment with :q.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 28 / 82

Functional programming with Haskell

Your first Haskell program

1 Write the following code to a text file and save it as first.hs:

double :: Int -> Int

double n = 2 * n

2 Inside GHCi, you can load the program with :l first.hs

(or by running ghci first.hs).
With :r you can reload it if you change something.

3 Now you can evaluate expressions like double 5,
double (2+3), and double (double 5).

4 With :t you can ask GHCi about the type of an expression.

5 Leave the interactive environment with :q.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 28 / 82

Functional programming with Haskell

Your first Haskell program

1 Write the following code to a text file and save it as first.hs:

double :: Int -> Int

double n = 2 * n

2 Inside GHCi, you can load the program with :l first.hs

(or by running ghci first.hs).
With :r you can reload it if you change something.

3 Now you can evaluate expressions like double 5,
double (2+3), and double (double 5).

4 With :t you can ask GHCi about the type of an expression.

5 Leave the interactive environment with :q.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 28 / 82

Functional programming with Haskell

Your first Haskell program

1 Write the following code to a text file and save it as first.hs:

double :: Int -> Int

double n = 2 * n

2 Inside GHCi, you can load the program with :l first.hs

(or by running ghci first.hs).
With :r you can reload it if you change something.

3 Now you can evaluate expressions like double 5,
double (2+3), and double (double 5).

4 With :t you can ask GHCi about the type of an expression.

5 Leave the interactive environment with :q.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 28 / 82

Functional programming with Haskell

Examples from Chapter 3 of the Book

module Day1

where

import Data.List

import Data.Char

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 29 / 82

Functional programming with Haskell

Sentences can go on . . .

Sentences can go on

and on and on and on and on and on and on

gen :: Int -> String

gen 0 = "Sentences can go on"

gen n = gen (n-1) ++ " and on"

genS :: Int -> String

genS n = gen n ++ "."

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 30 / 82

Functional programming with Haskell

Sentences can go on . . .

Sentences can go on and on

and on and on and on and on and on

gen :: Int -> String

gen 0 = "Sentences can go on"

gen n = gen (n-1) ++ " and on"

genS :: Int -> String

genS n = gen n ++ "."

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 30 / 82

Functional programming with Haskell

Sentences can go on . . .

Sentences can go on and on and on

and on and on and on and on

gen :: Int -> String

gen 0 = "Sentences can go on"

gen n = gen (n-1) ++ " and on"

genS :: Int -> String

genS n = gen n ++ "."

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 30 / 82

Functional programming with Haskell

Sentences can go on . . .

Sentences can go on and on and on and on

and on and on and on

gen :: Int -> String

gen 0 = "Sentences can go on"

gen n = gen (n-1) ++ " and on"

genS :: Int -> String

genS n = gen n ++ "."

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 30 / 82

Functional programming with Haskell

Sentences can go on . . .

Sentences can go on and on and on and on and on

and on and on

gen :: Int -> String

gen 0 = "Sentences can go on"

gen n = gen (n-1) ++ " and on"

genS :: Int -> String

genS n = gen n ++ "."

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 30 / 82

Functional programming with Haskell

Sentences can go on . . .

Sentences can go on and on and on and on and on and on

and on

gen :: Int -> String

gen 0 = "Sentences can go on"

gen n = gen (n-1) ++ " and on"

genS :: Int -> String

genS n = gen n ++ "."

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 30 / 82

Functional programming with Haskell

Sentences can go on . . .

Sentences can go on and on and on and on and on and on and on

gen :: Int -> String

gen 0 = "Sentences can go on"

gen n = gen (n-1) ++ " and on"

genS :: Int -> String

genS n = gen n ++ "."

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 30 / 82

Functional programming with Haskell

Sentences can go on . . .

Sentences can go on and on and on and on and on and on and on

gen :: Int -> String

gen 0 = "Sentences can go on"

gen n = gen (n-1) ++ " and on"

genS :: Int -> String

genS n = gen n ++ "."

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 30 / 82

Functional programming with Haskell

A lazy list

sentences = "Sentences can go " ++ onAndOn

onAndOn = "on and " ++ onAndOn

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 31 / 82

Functional programming with Haskell

Lambda Abstraction in Haskell

In Haskell, \ x expresses lambda abstraction over variable x.

sqr :: Int -> Int

sqr = \ x -> x * x

• The intention is that variabele x stands proxy for a number of type
Int.

• The result, the squared number, also has type Int.

• The function sqr is a function that, when combined with an
argument of type Int, yields a value of type Int.

• This is precisely what the type-indication Int -> Int expresses.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 32 / 82

Functional programming with Haskell

Lambda Abstraction in Haskell

In Haskell, \ x expresses lambda abstraction over variable x.

sqr :: Int -> Int

sqr = \ x -> x * x

• The intention is that variabele x stands proxy for a number of type
Int.

• The result, the squared number, also has type Int.

• The function sqr is a function that, when combined with an
argument of type Int, yields a value of type Int.

• This is precisely what the type-indication Int -> Int expresses.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 32 / 82

Functional programming with Haskell

Lambda Abstraction in Haskell

In Haskell, \ x expresses lambda abstraction over variable x.

sqr :: Int -> Int

sqr = \ x -> x * x

• The intention is that variabele x stands proxy for a number of type
Int.

• The result, the squared number, also has type Int.

• The function sqr is a function that, when combined with an
argument of type Int, yields a value of type Int.

• This is precisely what the type-indication Int -> Int expresses.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 32 / 82

Functional programming with Haskell

Lambda Abstraction in Haskell

In Haskell, \ x expresses lambda abstraction over variable x.

sqr :: Int -> Int

sqr = \ x -> x * x

• The intention is that variabele x stands proxy for a number of type
Int.

• The result, the squared number, also has type Int.

• The function sqr is a function that, when combined with an
argument of type Int, yields a value of type Int.

• This is precisely what the type-indication Int -> Int expresses.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 32 / 82

Functional programming with Haskell

Lambda Abstraction in Haskell

In Haskell, \ x expresses lambda abstraction over variable x.

sqr :: Int -> Int

sqr = \ x -> x * x

• The intention is that variabele x stands proxy for a number of type
Int.

• The result, the squared number, also has type Int.

• The function sqr is a function that, when combined with an
argument of type Int, yields a value of type Int.

• This is precisely what the type-indication Int -> Int expresses.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 32 / 82

Functional programming with Haskell

String Functions in Haskell

Prelude> (\ x -> x ++ " emeritus") "professor"

"professor emeritus"

This combines lambda abstraction and concatenation.

The types:

Prelude> :t (\ x -> x ++ " emeritus")

\x -> x ++ " emeritus" :: [Char] -> [Char]

Prelude> :t "professor"

"professor" :: String

Prelude> :t (\ x -> x ++ " emeritus") "professor"

(\x -> x ++ " emeritus") "professor" :: [Char]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 33 / 82

Functional programming with Haskell

String Functions in Haskell

Prelude> (\ x -> x ++ " emeritus") "professor"

"professor emeritus"

This combines lambda abstraction and concatenation.

The types:

Prelude> :t (\ x -> x ++ " emeritus")

\x -> x ++ " emeritus" :: [Char] -> [Char]

Prelude> :t "professor"

"professor" :: String

Prelude> :t (\ x -> x ++ " emeritus") "professor"

(\x -> x ++ " emeritus") "professor" :: [Char]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 33 / 82

Functional programming with Haskell

String Functions in Haskell

Prelude> (\ x -> x ++ " emeritus") "professor"

"professor emeritus"

This combines lambda abstraction and concatenation.

The types:

Prelude> :t (\ x -> x ++ " emeritus")

\x -> x ++ " emeritus" :: [Char] -> [Char]

Prelude> :t "professor"

"professor" :: String

Prelude> :t (\ x -> x ++ " emeritus") "professor"

(\x -> x ++ " emeritus") "professor" :: [Char]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 33 / 82

Functional programming with Haskell

Concatenation

The type of the concatenation function:

Prelude> :t (++)

(++) :: forall a. [a] -> [a] -> [a]

The type indicates that (++) not only concatenates strings. It works for
lists in general.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 34 / 82

Functional programming with Haskell

Concatenation

The type of the concatenation function:

Prelude> :t (++)

(++) :: forall a. [a] -> [a] -> [a]

The type indicates that (++) not only concatenates strings. It works for
lists in general.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 34 / 82

Functional programming with Haskell

More String Functions in Haskell

Prelude> (\ x -> "nice " ++ x) "guy"

"nice guy"

Prelude> (\ f -> \ x -> "very " ++ (f x))

(\ x -> "nice " ++ x) "guy"

"very nice guy"

The types:

Prelude> :t "guy"

"guy" :: [Char]

Prelude> :t (\ x -> "nice " ++ x)

(\ x -> "nice " ++ x) :: [Char] -> [Char]

Prelude> :t (\ f -> \ x -> "very " ++ (f x))

(\ f -> \ x -> "very " ++ (f x))

:: forall t. (t -> [Char]) -> t -> [Char]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 35 / 82

Functional programming with Haskell

More String Functions in Haskell

Prelude> (\ x -> "nice " ++ x) "guy"

"nice guy"

Prelude> (\ f -> \ x -> "very " ++ (f x))

(\ x -> "nice " ++ x) "guy"

"very nice guy"

The types:

Prelude> :t "guy"

"guy" :: [Char]

Prelude> :t (\ x -> "nice " ++ x)

(\ x -> "nice " ++ x) :: [Char] -> [Char]

Prelude> :t (\ f -> \ x -> "very " ++ (f x))

(\ f -> \ x -> "very " ++ (f x))

:: forall t. (t -> [Char]) -> t -> [Char]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 35 / 82

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Montague" and "Chomsky" (note the
double quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 36 / 82

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Montague" and "Chomsky" (note the
double quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 36 / 82

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Montague" and "Chomsky" (note the
double quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 36 / 82

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Montague" and "Chomsky" (note the
double quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 36 / 82

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Montague" and "Chomsky" (note the
double quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 36 / 82

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Montague" and "Chomsky" (note the
double quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 36 / 82

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Montague" and "Chomsky" (note the
double quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 36 / 82

Functional programming with Haskell

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have
type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Montague" and "Chomsky" (note the
double quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following
character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 36 / 82

Functional programming with Haskell

Properties of Strings

• If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of
type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 37 / 82

Functional programming with Haskell

Properties of Strings

• If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of
type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 37 / 82

Functional programming with Haskell

Properties of Strings

• If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of
type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 37 / 82

Functional programming with Haskell

Properties of Strings

• If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of
type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 37 / 82

Functional programming with Haskell

Properties of Strings

• If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of
type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 37 / 82

Functional programming with Haskell

Properties of Strings

• If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of
type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 37 / 82

Functional programming with Haskell

Properties of Strings

• If strings have type [Char] (or String), properties of strings have
type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical
non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of
type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of
the same type to a new list of objects, again of the same type.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 37 / 82

Functional programming with Haskell

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

• What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 38 / 82

Functional programming with Haskell

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

• What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 38 / 82

Functional programming with Haskell

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

• What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 38 / 82

Functional programming with Haskell

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

• What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 38 / 82

Functional programming with Haskell

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

• What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 38 / 82

Functional programming with Haskell

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

• What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 38 / 82

Functional programming with Haskell

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs,
y:ys, and so on, as a useful reminder of the facts that x is an
element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own
definition. We will encounter such recursive function definitions
again and again.

• What the definition of aword says is that the empty string is not an
aword, and a non-empty string is an aword if either the head of the
string is the character a, or the tail of the sring is an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 38 / 82

Functional programming with Haskell

List Reversal

CHOMSKY

YKSMOHC

EUGATNOM

MONTAGUE

reversal :: [a] -> [a]

reversal [] = []

reversal (x:t) = reversal t ++ [x]

Reversal works for any list, not just for strings.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 39 / 82

Functional programming with Haskell

List Reversal

CHOMSKY YKSMOHC

EUGATNOM

MONTAGUE

reversal :: [a] -> [a]

reversal [] = []

reversal (x:t) = reversal t ++ [x]

Reversal works for any list, not just for strings.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 39 / 82

Functional programming with Haskell

List Reversal

CHOMSKY YKSMOHC

EUGATNOM MONTAGUE

reversal :: [a] -> [a]

reversal [] = []

reversal (x:t) = reversal t ++ [x]

Reversal works for any list, not just for strings.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 39 / 82

Functional programming with Haskell

List Reversal

CHOMSKY YKSMOHC

EUGATNOM MONTAGUE

reversal :: [a] -> [a]

reversal [] = []

reversal (x:t) = reversal t ++ [x]

Reversal works for any list, not just for strings.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 39 / 82

Functional programming with Haskell

List Reversal

CHOMSKY YKSMOHC

EUGATNOM MONTAGUE

reversal :: [a] -> [a]

reversal [] = []

reversal (x:t) = reversal t ++ [x]

Reversal works for any list, not just for strings.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 39 / 82

Functional programming with Haskell

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are
unbounded.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.

To denote arbitrary types, Haskell allows the use of type variables. For
these, a, b, . . . , are used.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 40 / 82

Functional programming with Haskell

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are
unbounded.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.

To denote arbitrary types, Haskell allows the use of type variables. For
these, a, b, . . . , are used.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 40 / 82

Functional programming with Haskell

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are
unbounded.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.

To denote arbitrary types, Haskell allows the use of type variables. For
these, a, b, . . . , are used.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 40 / 82

Functional programming with Haskell

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are
unbounded.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.

To denote arbitrary types, Haskell allows the use of type variables. For
these, a, b, . . . , are used.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 40 / 82

Functional programming with Haskell

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are
unbounded.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.

To denote arbitrary types, Haskell allows the use of type variables. For
these, a, b, . . . , are used.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 40 / 82

Functional programming with Haskell

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are
unbounded.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.

To denote arbitrary types, Haskell allows the use of type variables. For
these, a, b, . . . , are used.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 40 / 82

Functional programming with Haskell

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are
unbounded.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.

To denote arbitrary types, Haskell allows the use of type variables. For
these, a, b, . . . , are used.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 40 / 82

Functional programming with Haskell

Haskell Derived Types

• By list-formation: if a is a type, [a] is the type of lists over a.
Examples: [Int] is the type of lists of integers; [Char] is the type of
lists of characters, or strings.

• By pair- or tuple-formation: if a and b are types, then (a,b) is the
type of pairs with an object of type a as their first component, and an
object of type b as their second component. If a, b and c are types,
then (a,b,c) is the type of triples with an object of type a as their
first component, an object of type b as their second component, and
an object of type c as their third component . . .

• By function definition: a -> b is the type of a function that takes
arguments of type a and returns values of type b.

• By defining your own datatype from scratch, with a data type
declaration. More about this in due course.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 41 / 82

Functional programming with Haskell

Haskell Derived Types

• By list-formation: if a is a type, [a] is the type of lists over a.
Examples: [Int] is the type of lists of integers; [Char] is the type of
lists of characters, or strings.

• By pair- or tuple-formation: if a and b are types, then (a,b) is the
type of pairs with an object of type a as their first component, and an
object of type b as their second component. If a, b and c are types,
then (a,b,c) is the type of triples with an object of type a as their
first component, an object of type b as their second component, and
an object of type c as their third component . . .

• By function definition: a -> b is the type of a function that takes
arguments of type a and returns values of type b.

• By defining your own datatype from scratch, with a data type
declaration. More about this in due course.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 41 / 82

Functional programming with Haskell

Haskell Derived Types

• By list-formation: if a is a type, [a] is the type of lists over a.
Examples: [Int] is the type of lists of integers; [Char] is the type of
lists of characters, or strings.

• By pair- or tuple-formation: if a and b are types, then (a,b) is the
type of pairs with an object of type a as their first component, and an
object of type b as their second component. If a, b and c are types,
then (a,b,c) is the type of triples with an object of type a as their
first component, an object of type b as their second component, and
an object of type c as their third component . . .

• By function definition: a -> b is the type of a function that takes
arguments of type a and returns values of type b.

• By defining your own datatype from scratch, with a data type
declaration. More about this in due course.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 41 / 82

Functional programming with Haskell

Haskell Derived Types

• By list-formation: if a is a type, [a] is the type of lists over a.
Examples: [Int] is the type of lists of integers; [Char] is the type of
lists of characters, or strings.

• By pair- or tuple-formation: if a and b are types, then (a,b) is the
type of pairs with an object of type a as their first component, and an
object of type b as their second component. If a, b and c are types,
then (a,b,c) is the type of triples with an object of type a as their
first component, an object of type b as their second component, and
an object of type c as their third component . . .

• By function definition: a -> b is the type of a function that takes
arguments of type a and returns values of type b.

• By defining your own datatype from scratch, with a data type
declaration. More about this in due course.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 41 / 82

Functional programming with Haskell

Haskell Derived Types

• By list-formation: if a is a type, [a] is the type of lists over a.
Examples: [Int] is the type of lists of integers; [Char] is the type of
lists of characters, or strings.

• By pair- or tuple-formation: if a and b are types, then (a,b) is the
type of pairs with an object of type a as their first component, and an
object of type b as their second component. If a, b and c are types,
then (a,b,c) is the type of triples with an object of type a as their
first component, an object of type b as their second component, and
an object of type c as their third component . . .

• By function definition: a -> b is the type of a function that takes
arguments of type a and returns values of type b.

• By defining your own datatype from scratch, with a data type
declaration. More about this in due course.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 41 / 82

Functional programming with Haskell

Mapping

If you use the Hugs command :t to find the types of the function map,
you get the following:

Prelude> :t map

map :: forall a b. (a -> b) -> [a] -> [b]

The function map takes a function and a list and returns a list containing
the results of applying the function to the individual list members.

If f is a function of type a -> b and xs is a list of type [a], then
map f xs will return a list of type [b]. E.g., map (^2) [1..9] will
produce the list of squares

[1, 4, 9, 16, 25, 36, 49, 64, 81]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 42 / 82

Functional programming with Haskell

Mapping

If you use the Hugs command :t to find the types of the function map,
you get the following:

Prelude> :t map

map :: forall a b. (a -> b) -> [a] -> [b]

The function map takes a function and a list and returns a list containing
the results of applying the function to the individual list members.

If f is a function of type a -> b and xs is a list of type [a], then
map f xs will return a list of type [b]. E.g., map (^2) [1..9] will
produce the list of squares

[1, 4, 9, 16, 25, 36, 49, 64, 81]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 42 / 82

Functional programming with Haskell

Mapping

If you use the Hugs command :t to find the types of the function map,
you get the following:

Prelude> :t map

map :: forall a b. (a -> b) -> [a] -> [b]

The function map takes a function and a list and returns a list containing
the results of applying the function to the individual list members.

If f is a function of type a -> b and xs is a list of type [a], then
map f xs will return a list of type [b]. E.g., map (^2) [1..9] will
produce the list of squares

[1, 4, 9, 16, 25, 36, 49, 64, 81]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 42 / 82

Functional programming with Haskell

Sections

• In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

• (x op) is the operation resulting from applying op to its lefthand
side argument.

• (op) is the prefix version of the operator.

• Thus (2^) is the operation that computes powers of 2, and
map (2^) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

• Similarly, (>3) denotes the property of being greater than 3, and
(3>) the property of being smaller than 3.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 43 / 82

Functional programming with Haskell

Sections

• In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

• (x op) is the operation resulting from applying op to its lefthand
side argument.

• (op) is the prefix version of the operator.

• Thus (2^) is the operation that computes powers of 2, and
map (2^) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

• Similarly, (>3) denotes the property of being greater than 3, and
(3>) the property of being smaller than 3.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 43 / 82

Functional programming with Haskell

Sections

• In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

• (x op) is the operation resulting from applying op to its lefthand
side argument.

• (op) is the prefix version of the operator.

• Thus (2^) is the operation that computes powers of 2, and
map (2^) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

• Similarly, (>3) denotes the property of being greater than 3, and
(3>) the property of being smaller than 3.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 43 / 82

Functional programming with Haskell

Sections

• In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

• (x op) is the operation resulting from applying op to its lefthand
side argument.

• (op) is the prefix version of the operator.

• Thus (2^) is the operation that computes powers of 2, and
map (2^) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

• Similarly, (>3) denotes the property of being greater than 3, and
(3>) the property of being smaller than 3.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 43 / 82

Functional programming with Haskell

Sections

• In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

• (x op) is the operation resulting from applying op to its lefthand
side argument.

• (op) is the prefix version of the operator.

• Thus (2^) is the operation that computes powers of 2, and
map (2^) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

• Similarly, (>3) denotes the property of being greater than 3, and
(3>) the property of being smaller than 3.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 43 / 82

Functional programming with Haskell

Sections

• In general, if op is an infix operator, (op x) is the operation
resulting from applying op to its righthand side argument.

• (x op) is the operation resulting from applying op to its lefthand
side argument.

• (op) is the prefix version of the operator.

• Thus (2^) is the operation that computes powers of 2, and
map (2^) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

• Similarly, (>3) denotes the property of being greater than 3, and
(3>) the property of being smaller than 3.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 43 / 82

Functional programming with Haskell

Map

If p is a property (an operation of type a -> Bool) and l is a list of type
[a], then map p l will produce a list of type Bool (a list of truth
values), like this:

Prelude> map (>3) [1..6]

[False, False, False, True, True, True]

Prelude>

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = (f x) : map f xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 44 / 82

Functional programming with Haskell

Map

If p is a property (an operation of type a -> Bool) and l is a list of type
[a], then map p l will produce a list of type Bool (a list of truth
values), like this:

Prelude> map (>3) [1..6]

[False, False, False, True, True, True]

Prelude>

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = (f x) : map f xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 44 / 82

Functional programming with Haskell

Map

If p is a property (an operation of type a -> Bool) and l is a list of type
[a], then map p l will produce a list of type Bool (a list of truth
values), like this:

Prelude> map (>3) [1..6]

[False, False, False, True, True, True]

Prelude>

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = (f x) : map f xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 44 / 82

Functional programming with Haskell

Filter

A function for filtering out the elements from a list that satisfy a given
property.

Prelude> filter (>3) [1..10]

[4,5,6,7,8,9,10]

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 45 / 82

Functional programming with Haskell

Filter

A function for filtering out the elements from a list that satisfy a given
property.

Prelude> filter (>3) [1..10]

[4,5,6,7,8,9,10]

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 45 / 82

Functional programming with Haskell

Filter

A function for filtering out the elements from a list that satisfy a given
property.

Prelude> filter (>3) [1..10]

[4,5,6,7,8,9,10]

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 45 / 82

Functional programming with Haskell

Filter

A function for filtering out the elements from a list that satisfy a given
property.

Prelude> filter (>3) [1..10]

[4,5,6,7,8,9,10]

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 45 / 82

Functional programming with Haskell

List comprehension

List comprehension is defining lists by the following method:

[x | x <- xs, property x]

This defines the sublist of xs of all items satisfying property. It is
equivalent to:

filter property xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 46 / 82

Functional programming with Haskell

Examples

someEvens = [x | x <- [1..1000] , even x]

evensUntil n = [x | x <- [1..n], even x]

allEvens = [x | x <- [1..] , even x]

Equivalently:

someEvens = filter even [1..1000]

evensUntil n = filter even [1..n]

allEvens = filter even [1..]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 47 / 82

Functional programming with Haskell

Examples

someEvens = [x | x <- [1..1000] , even x]

evensUntil n = [x | x <- [1..n], even x]

allEvens = [x | x <- [1..] , even x]

Equivalently:

someEvens = filter even [1..1000]

evensUntil n = filter even [1..n]

allEvens = filter even [1..]

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 47 / 82

Functional programming with Haskell

Nub

nub removes duplicates, as follows:

nub :: Eq a => [a] -> [a]

nub [] = []

nub (x:xs) = x : nub (filter (/= x) xs)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 48 / 82

Functional programming with Haskell

Function Composition

• The composition of two functions f and g , pronounced ‘f after g ’ is
the function that results from first applying g and next f .

• Standard notation for this: f · g .

• This is pronounced as “f after g”.

• Haskell implementation:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

f . g = \ x -> f (g x)

• Note the types!

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 49 / 82

Functional programming with Haskell

Function Composition

• The composition of two functions f and g , pronounced ‘f after g ’ is
the function that results from first applying g and next f .

• Standard notation for this: f · g .

• This is pronounced as “f after g”.

• Haskell implementation:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

f . g = \ x -> f (g x)

• Note the types!

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 49 / 82

Functional programming with Haskell

Function Composition

• The composition of two functions f and g , pronounced ‘f after g ’ is
the function that results from first applying g and next f .

• Standard notation for this: f · g .

• This is pronounced as “f after g”.

• Haskell implementation:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

f . g = \ x -> f (g x)

• Note the types!

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 49 / 82

Functional programming with Haskell

Function Composition

• The composition of two functions f and g , pronounced ‘f after g ’ is
the function that results from first applying g and next f .

• Standard notation for this: f · g .

• This is pronounced as “f after g”.

• Haskell implementation:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

f . g = \ x -> f (g x)

• Note the types!

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 49 / 82

Functional programming with Haskell

Function Composition

• The composition of two functions f and g , pronounced ‘f after g ’ is
the function that results from first applying g and next f .

• Standard notation for this: f · g .

• This is pronounced as “f after g”.

• Haskell implementation:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

f . g = \ x -> f (g x)

• Note the types!

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 49 / 82

Functional programming with Haskell

Function Composition

• The composition of two functions f and g , pronounced ‘f after g ’ is
the function that results from first applying g and next f .

• Standard notation for this: f · g .

• This is pronounced as “f after g”.

• Haskell implementation:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

f . g = \ x -> f (g x)

• Note the types!

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 49 / 82

Functional programming with Haskell

elem, all, and

elem :: Eq a => a -> [a] -> Bool

elem x [] = False

elem x (y:ys) = x == y || elem x ys

all :: Eq a => (a -> Bool) -> [a] -> Bool

all p = and . map p

Note the use of . for function composition.

and :: [Bool] -> Bool

and [] = True

and (x:xs) = x && and xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 50 / 82

Functional programming with Haskell

elem, all, and

elem :: Eq a => a -> [a] -> Bool

elem x [] = False

elem x (y:ys) = x == y || elem x ys

all :: Eq a => (a -> Bool) -> [a] -> Bool

all p = and . map p

Note the use of . for function composition.

and :: [Bool] -> Bool

and [] = True

and (x:xs) = x && and xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 50 / 82

Functional programming with Haskell

elem, all, and

elem :: Eq a => a -> [a] -> Bool

elem x [] = False

elem x (y:ys) = x == y || elem x ys

all :: Eq a => (a -> Bool) -> [a] -> Bool

all p = and . map p

Note the use of . for function composition.

and :: [Bool] -> Bool

and [] = True

and (x:xs) = x && and xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 50 / 82

Functional programming with Haskell

elem, all, and

elem :: Eq a => a -> [a] -> Bool

elem x [] = False

elem x (y:ys) = x == y || elem x ys

all :: Eq a => (a -> Bool) -> [a] -> Bool

all p = and . map p

Note the use of . for function composition.

and :: [Bool] -> Bool

and [] = True

and (x:xs) = x && and xs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 50 / 82

Functional programming with Haskell

Sonnet 73

sonnet73 =

"That time of year thou mayst in me behold\n"

++ "When yellow leaves , or none , or few , do hang\n"

++ "Upon those boughs which shake against the cold ,\n"

++ "Bare ruin ’d choirs , where late the sweet birds sang.\n"

++ "In me thou seest the twilight of such day\n"

++ "As after sunset fadeth in the west ,\n"

++ "Which by and by black night doth take away ,\n"

++ "Death ’s second self , that seals up all in rest.\n"

++ "In me thou see ’st the glowing of such fire\n"

++ "That on the ashes of his youth doth lie ,\n"

++ "As the death -bed whereon it must expire\n"

++ "Consumed with that which it was nourish ’d by.\n"

++ "This thou perceivest , which makes thy love more strong ,\n"

++ "To love that well which thou must leave ere long."

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 51 / 82

Functional programming with Haskell

Counting

count :: Eq a => a -> [a] -> Int

count x [] = 0

count x (y:ys) | x == y = succ (count x ys)

| otherwise = count x ys

average :: [Int] -> Rational

average [] = error "empty list"

average xs = toRational (sum xs) / toRational (length xs)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 52 / 82

Functional programming with Haskell

Counting

count :: Eq a => a -> [a] -> Int

count x [] = 0

count x (y:ys) | x == y = succ (count x ys)

| otherwise = count x ys

average :: [Int] -> Rational

average [] = error "empty list"

average xs = toRational (sum xs) / toRational (length xs)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 52 / 82

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt exercise 3.16 on page 51 of the book.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 53 / 82

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt exercise 3.16 on page 51 of the book.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 53 / 82

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt exercise 3.16 on page 51 of the book.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 53 / 82

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt exercise 3.16 on page 51 of the book.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 53 / 82

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt exercise 3.16 on page 51 of the book.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 53 / 82

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt exercise 3.16 on page 51 of the book.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 53 / 82

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt exercise 3.16 on page 51 of the book.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 53 / 82

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt exercise 3.16 on page 51 of the book.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 53 / 82

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt exercise 3.16 on page 51 of the book.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 53 / 82

Functional programming with Haskell

Some Commands to Try Out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt exercise 3.16 on page 51 of the book.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 53 / 82

An inference engine with a natural language interface

Example

An inference engine with a natural language interface

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 54 / 82

An inference engine with a natural language interface

Overview

• The Aristotelian quantifiers

• A natural language engine for talking about classes.

• Demo

• A tentative connection with cognitive realities.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 55 / 82

An inference engine with a natural language interface

The Aristotelian quantifiers

All A are B No A are B

Some A are B Not all A are B

Aristotle interprets his quantifiers with existential import: All A are B and
No A are B are taken to imply that there are A.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 56 / 82

An inference engine with a natural language interface

What can we ask or state with the Aristotelian quantifiers?

Questions and Statements (PN for plural nouns):

Q ::= Are all PN PN?

| Are no PN PN?

| Are any PN PN?

| Are any PN not PN?

| What about PN?

S ::= All PN are PN.

| No PN are PN.

| Some PN are PN.

| Some PN are not PN.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 57 / 82

An inference engine with a natural language interface

Example interaction

user@home:~/courses/esslli2011$./Main

Welcome to the Knowledge Base.

Update or query the KB:

How about women?

All women are humans.

No women are men.

Update or query the KB:

All mammals are animals.

I knew that already.

Update or query the KB:

No mammals are birds.

OK.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 58 / 82

An inference engine with a natural language interface

Example interaction

user@home:~/courses/esslli2011$./Main

Welcome to the Knowledge Base.

Update or query the KB:

How about women?

All women are humans.

No women are men.

Update or query the KB:

All mammals are animals.

I knew that already.

Update or query the KB:

No mammals are birds.

OK.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 58 / 82

An inference engine with a natural language interface

Example interaction

user@home:~/courses/esslli2011$./Main

Welcome to the Knowledge Base.

Update or query the KB:

How about women?

All women are humans.

No women are men.

Update or query the KB:

All mammals are animals.

I knew that already.

Update or query the KB:

No mammals are birds.

OK.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 58 / 82

An inference engine with a natural language interface

Example interaction

user@home:~/courses/esslli2011$./Main

Welcome to the Knowledge Base.

Update or query the KB:

How about women?

All women are humans.

No women are men.

Update or query the KB:

All mammals are animals.

I knew that already.

Update or query the KB:

No mammals are birds.

OK.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 58 / 82

An inference engine with a natural language interface

Example interaction

user@home:~/courses/esslli2011$./Main

Welcome to the Knowledge Base.

Update or query the KB:

How about women?

All women are humans.

No women are men.

Update or query the KB:

All mammals are animals.

I knew that already.

Update or query the KB:

No mammals are birds.

OK.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 58 / 82

An inference engine with a natural language interface

Example interaction

user@home:~/courses/esslli2011$./Main

Welcome to the Knowledge Base.

Update or query the KB:

How about women?

All women are humans.

No women are men.

Update or query the KB:

All mammals are animals.

I knew that already.

Update or query the KB:

No mammals are birds.

OK.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 58 / 82

An inference engine with a natural language interface

Example interaction

user@home:~/courses/esslli2011$./Main

Welcome to the Knowledge Base.

Update or query the KB:

How about women?

All women are humans.

No women are men.

Update or query the KB:

All mammals are animals.

I knew that already.

Update or query the KB:

No mammals are birds.

OK.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 58 / 82

An inference engine with a natural language interface

Example interaction

user@home:~/courses/esslli2011$./Main

Welcome to the Knowledge Base.

Update or query the KB:

How about women?

All women are humans.

No women are men.

Update or query the KB:

All mammals are animals.

I knew that already.

Update or query the KB:

No mammals are birds.

OK.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 58 / 82

An inference engine with a natural language interface

Example interaction

Update or query the KB:

How about women?

All women are humans.

No women are men.

Update or query the KB:

All humans are mammals.

OK.

Update or query the KB:

How about women?

All women are animals.

All women are humans.

All women are mammals.

No women are birds.

No women are men.

No women are owls.

Update or query the KB:

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 59 / 82

An inference engine with a natural language interface

Example interaction

Update or query the KB:

How about women?

All women are humans.

No women are men.

Update or query the KB:

All humans are mammals.

OK.

Update or query the KB:

How about women?

All women are animals.

All women are humans.

All women are mammals.

No women are birds.

No women are men.

No women are owls.

Update or query the KB:

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 59 / 82

An inference engine with a natural language interface

Example interaction

Update or query the KB:

How about women?

All women are humans.

No women are men.

Update or query the KB:

All humans are mammals.

OK.

Update or query the KB:

How about women?

All women are animals.

All women are humans.

All women are mammals.

No women are birds.

No women are men.

No women are owls.

Update or query the KB:

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 59 / 82

An inference engine with a natural language interface

Example interaction

Update or query the KB:

How about women?

All women are humans.

No women are men.

Update or query the KB:

All humans are mammals.

OK.

Update or query the KB:

How about women?

All women are animals.

All women are humans.

All women are mammals.

No women are birds.

No women are men.

No women are owls.

Update or query the KB:

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 59 / 82

An inference engine with a natural language interface

Example interaction

Update or query the KB:

How about women?

All women are humans.

No women are men.

Update or query the KB:

All humans are mammals.

OK.

Update or query the KB:

How about women?

All women are animals.

All women are humans.

All women are mammals.

No women are birds.

No women are men.

No women are owls.

Update or query the KB:

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 59 / 82

An inference engine with a natural language interface

Example interaction

Update or query the KB:

How about women?

All women are humans.

No women are men.

Update or query the KB:

All humans are mammals.

OK.

Update or query the KB:

How about women?

All women are animals.

All women are humans.

All women are mammals.

No women are birds.

No women are men.

No women are owls.

Update or query the KB:

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 59 / 82

An inference engine with a natural language interface

Example interaction

Update or query the KB:

How about women?

All women are humans.

No women are men.

Update or query the KB:

All humans are mammals.

OK.

Update or query the KB:

How about women?

All women are animals.

All women are humans.

All women are mammals.

No women are birds.

No women are men.

No women are owls.

Update or query the KB:Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 59 / 82

An inference engine with a natural language interface

Example knowledge base

nonmen beautiesnonbullies

mortals

men

humansnonwomen

women

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 60 / 82

An inference engine with a natural language interface

The meanings of the Aristotelean quantifiers

• ALL: Set inclusion

• SOME: Non-empty set intersection

• NOT ALL: Non-inclusion

• NO: Empty intersection

Set inclusion:

• A ⊆ B holds if and only if every element of A is an element of B.

• A 6⊆ B holds if and only if some element of A is not an element of B.

Complementation:

• Fix a universe U. A = U − A denotes the set of things in the universe
that are not elements of A.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 61 / 82

An inference engine with a natural language interface

Implementation (in Haskell)

One possible implementation is given in Sections 4.3 and 5.7 of The Book.

This code can be found at

htpp://www.computational-semantics.eu/InfEng.hs

Method: compute the relations ⊆ and 6⊆ from the KB, using a fixpoint
operation.

Here we present a different method, based on reduction to propositional
logic.

Homework for you: compare the performance of the two versions.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 62 / 82

htpp://www.computational-semantics.eu/InfEng.hs

An inference engine with a natural language interface

Implementation (in Haskell)

One possible implementation is given in Sections 4.3 and 5.7 of The Book.

This code can be found at

htpp://www.computational-semantics.eu/InfEng.hs

Method: compute the relations ⊆ and 6⊆ from the KB, using a fixpoint
operation.

Here we present a different method, based on reduction to propositional
logic.

Homework for you: compare the performance of the two versions.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 62 / 82

htpp://www.computational-semantics.eu/InfEng.hs

An inference engine with a natural language interface

Implementation (in Haskell)

One possible implementation is given in Sections 4.3 and 5.7 of The Book.

This code can be found at

htpp://www.computational-semantics.eu/InfEng.hs

Method: compute the relations ⊆ and 6⊆ from the KB, using a fixpoint
operation.

Here we present a different method, based on reduction to propositional
logic.

Homework for you: compare the performance of the two versions.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 62 / 82

htpp://www.computational-semantics.eu/InfEng.hs

An inference engine with a natural language interface

Implementation (in Haskell)

One possible implementation is given in Sections 4.3 and 5.7 of The Book.

This code can be found at

htpp://www.computational-semantics.eu/InfEng.hs

Method: compute the relations ⊆ and 6⊆ from the KB, using a fixpoint
operation.

Here we present a different method, based on reduction to propositional
logic.

Homework for you: compare the performance of the two versions.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 62 / 82

htpp://www.computational-semantics.eu/InfEng.hs

An inference engine with a natural language interface

Implementation (in Haskell)

One possible implementation is given in Sections 4.3 and 5.7 of The Book.

This code can be found at

htpp://www.computational-semantics.eu/InfEng.hs

Method: compute the relations ⊆ and 6⊆ from the KB, using a fixpoint
operation.

Here we present a different method, based on reduction to propositional
logic.

Homework for you: compare the performance of the two versions.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 62 / 82

htpp://www.computational-semantics.eu/InfEng.hs

An inference engine with a natural language interface

Syllogistics and Propositional Logic

Key fact: A finite set of syllogistic forms Σ is unsatisable if and only if
there exists an existential form ψ such that ψ taken together with the
universal forms from Σ is unsatiable.

This restricted form of satisability can easily be tested with propositional
logic.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 63 / 82

An inference engine with a natural language interface

Syllogistics and Propositional Logic

Key fact: A finite set of syllogistic forms Σ is unsatisable if and only if
there exists an existential form ψ such that ψ taken together with the
universal forms from Σ is unsatiable.

This restricted form of satisability can easily be tested with propositional
logic.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 63 / 82

An inference engine with a natural language interface

Talking about the Properties of a Single Object

• Suppose we talk about the properties of a single object x .

• Let proposition letter a express that object x has property A.

• Then a universal statement “All A are B” gets translated as a→ b.

• An existential statement “Some A is B” gets translated as a ∧ b.

• For each property A we use a single proposition letter a.

• We have to check for each existential statement whether it is
satisfiable when taken together with all universal statements.

• To test the satisfiability of a set of syllogistic statements with n
existential statements we need n checks.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 64 / 82

An inference engine with a natural language interface

Talking about the Properties of a Single Object

• Suppose we talk about the properties of a single object x .

• Let proposition letter a express that object x has property A.

• Then a universal statement “All A are B” gets translated as a→ b.

• An existential statement “Some A is B” gets translated as a ∧ b.

• For each property A we use a single proposition letter a.

• We have to check for each existential statement whether it is
satisfiable when taken together with all universal statements.

• To test the satisfiability of a set of syllogistic statements with n
existential statements we need n checks.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 64 / 82

An inference engine with a natural language interface

Talking about the Properties of a Single Object

• Suppose we talk about the properties of a single object x .

• Let proposition letter a express that object x has property A.

• Then a universal statement “All A are B” gets translated as a→ b.

• An existential statement “Some A is B” gets translated as a ∧ b.

• For each property A we use a single proposition letter a.

• We have to check for each existential statement whether it is
satisfiable when taken together with all universal statements.

• To test the satisfiability of a set of syllogistic statements with n
existential statements we need n checks.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 64 / 82

An inference engine with a natural language interface

Talking about the Properties of a Single Object

• Suppose we talk about the properties of a single object x .

• Let proposition letter a express that object x has property A.

• Then a universal statement “All A are B” gets translated as a→ b.

• An existential statement “Some A is B” gets translated as a ∧ b.

• For each property A we use a single proposition letter a.

• We have to check for each existential statement whether it is
satisfiable when taken together with all universal statements.

• To test the satisfiability of a set of syllogistic statements with n
existential statements we need n checks.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 64 / 82

An inference engine with a natural language interface

Talking about the Properties of a Single Object

• Suppose we talk about the properties of a single object x .

• Let proposition letter a express that object x has property A.

• Then a universal statement “All A are B” gets translated as a→ b.

• An existential statement “Some A is B” gets translated as a ∧ b.

• For each property A we use a single proposition letter a.

• We have to check for each existential statement whether it is
satisfiable when taken together with all universal statements.

• To test the satisfiability of a set of syllogistic statements with n
existential statements we need n checks.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 64 / 82

An inference engine with a natural language interface

Talking about the Properties of a Single Object

• Suppose we talk about the properties of a single object x .

• Let proposition letter a express that object x has property A.

• Then a universal statement “All A are B” gets translated as a→ b.

• An existential statement “Some A is B” gets translated as a ∧ b.

• For each property A we use a single proposition letter a.

• We have to check for each existential statement whether it is
satisfiable when taken together with all universal statements.

• To test the satisfiability of a set of syllogistic statements with n
existential statements we need n checks.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 64 / 82

An inference engine with a natural language interface

Talking about the Properties of a Single Object

• Suppose we talk about the properties of a single object x .

• Let proposition letter a express that object x has property A.

• Then a universal statement “All A are B” gets translated as a→ b.

• An existential statement “Some A is B” gets translated as a ∧ b.

• For each property A we use a single proposition letter a.

• We have to check for each existential statement whether it is
satisfiable when taken together with all universal statements.

• To test the satisfiability of a set of syllogistic statements with n
existential statements we need n checks.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 64 / 82

An inference engine with a natural language interface

Talking about the Properties of a Single Object

• Suppose we talk about the properties of a single object x .

• Let proposition letter a express that object x has property A.

• Then a universal statement “All A are B” gets translated as a→ b.

• An existential statement “Some A is B” gets translated as a ∧ b.

• For each property A we use a single proposition letter a.

• We have to check for each existential statement whether it is
satisfiable when taken together with all universal statements.

• To test the satisfiability of a set of syllogistic statements with n
existential statements we need n checks.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 64 / 82

An inference engine with a natural language interface

Literals, Clauses, Clause Sets

literals a literal is a propositional letter or its negation.

clauses a clause is a set of literals

clause sets a clause set is a set of clauses

Read a clause as a disjunction of its literals, and a clause set as a
conjunction of its clauses.

(p → q) ∧ (q → r)

{{¬p, q}, {¬q, r}}.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 65 / 82

An inference engine with a natural language interface

Literals, Clauses, Clause Sets

literals a literal is a propositional letter or its negation.

clauses a clause is a set of literals

clause sets a clause set is a set of clauses

Read a clause as a disjunction of its literals, and a clause set as a
conjunction of its clauses.

(p → q) ∧ (q → r)

{{¬p, q}, {¬q, r}}.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 65 / 82

An inference engine with a natural language interface

Literals, Clauses, Clause Sets

literals a literal is a propositional letter or its negation.

clauses a clause is a set of literals

clause sets a clause set is a set of clauses

Read a clause as a disjunction of its literals, and a clause set as a
conjunction of its clauses.

(p → q) ∧ (q → r)

{{¬p, q}, {¬q, r}}.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 65 / 82

An inference engine with a natural language interface

Literals, Clauses, Clause Sets

literals a literal is a propositional letter or its negation.

clauses a clause is a set of literals

clause sets a clause set is a set of clauses

Read a clause as a disjunction of its literals, and a clause set as a
conjunction of its clauses.

(p → q) ∧ (q → r)

{{¬p, q}, {¬q, r}}.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 65 / 82

An inference engine with a natural language interface

Literals, Clauses, Clause Sets

literals a literal is a propositional letter or its negation.

clauses a clause is a set of literals

clause sets a clause set is a set of clauses

Read a clause as a disjunction of its literals, and a clause set as a
conjunction of its clauses.

(p → q) ∧ (q → r)

{{¬p, q}, {¬q, r}}.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 65 / 82

An inference engine with a natural language interface

Literals, Clauses, Clause Sets

literals a literal is a propositional letter or its negation.

clauses a clause is a set of literals

clause sets a clause set is a set of clauses

Read a clause as a disjunction of its literals, and a clause set as a
conjunction of its clauses.

(p → q) ∧ (q → r)

{{¬p, q}, {¬q, r}}.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 65 / 82

An inference engine with a natural language interface

Literals, Clauses, Clause Sets

literals a literal is a propositional letter or its negation.

clauses a clause is a set of literals

clause sets a clause set is a set of clauses

Read a clause as a disjunction of its literals, and a clause set as a
conjunction of its clauses.

(p → q) ∧ (q → r)

{{¬p, q}, {¬q, r}}.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 65 / 82

An inference engine with a natural language interface

Inference Rule: Unit Propagation

If one member of a clause set is a singleton {l}, then:

• remove every other clause containing l from the clause set;

• remove l from every clause in which it occurs.

The result of applying this rule is a simplified equivalent clause set.

Unit propagation for {p} to

{{p}, {¬p, q}, {¬q, r}, {p, s}}

yields
{{p}, {q}, {¬q, r}}.

Unit propagation for {q} to this yields:

{{p}, {q}, {r}}.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 66 / 82

An inference engine with a natural language interface

Inference Rule: Unit Propagation

If one member of a clause set is a singleton {l}, then:

• remove every other clause containing l from the clause set;

• remove l from every clause in which it occurs.

The result of applying this rule is a simplified equivalent clause set.

Unit propagation for {p} to

{{p}, {¬p, q}, {¬q, r}, {p, s}}

yields
{{p}, {q}, {¬q, r}}.

Unit propagation for {q} to this yields:

{{p}, {q}, {r}}.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 66 / 82

An inference engine with a natural language interface

Inference Rule: Unit Propagation

If one member of a clause set is a singleton {l}, then:

• remove every other clause containing l from the clause set;

• remove l from every clause in which it occurs.

The result of applying this rule is a simplified equivalent clause set.

Unit propagation for {p} to

{{p}, {¬p, q}, {¬q, r}, {p, s}}

yields
{{p}, {q}, {¬q, r}}.

Unit propagation for {q} to this yields:

{{p}, {q}, {r}}.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 66 / 82

An inference engine with a natural language interface

Inference Rule: Unit Propagation

If one member of a clause set is a singleton {l}, then:

• remove every other clause containing l from the clause set;

• remove l from every clause in which it occurs.

The result of applying this rule is a simplified equivalent clause set.

Unit propagation for {p} to

{{p}, {¬p, q}, {¬q, r}, {p, s}}

yields
{{p}, {q}, {¬q, r}}.

Unit propagation for {q} to this yields:

{{p}, {q}, {r}}.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 66 / 82

An inference engine with a natural language interface

Inference Rule: Unit Propagation

If one member of a clause set is a singleton {l}, then:

• remove every other clause containing l from the clause set;

• remove l from every clause in which it occurs.

The result of applying this rule is a simplified equivalent clause set.

Unit propagation for {p} to

{{p}, {¬p, q}, {¬q, r}, {p, s}}

yields

{{p}, {q}, {¬q, r}}.

Unit propagation for {q} to this yields:

{{p}, {q}, {r}}.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 66 / 82

An inference engine with a natural language interface

Inference Rule: Unit Propagation

If one member of a clause set is a singleton {l}, then:

• remove every other clause containing l from the clause set;

• remove l from every clause in which it occurs.

The result of applying this rule is a simplified equivalent clause set.

Unit propagation for {p} to

{{p}, {¬p, q}, {¬q, r}, {p, s}}

yields
{{p}, {q}, {¬q, r}}.

Unit propagation for {q} to this yields:

{{p}, {q}, {r}}.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 66 / 82

An inference engine with a natural language interface

Inference Rule: Unit Propagation

If one member of a clause set is a singleton {l}, then:

• remove every other clause containing l from the clause set;

• remove l from every clause in which it occurs.

The result of applying this rule is a simplified equivalent clause set.

Unit propagation for {p} to

{{p}, {¬p, q}, {¬q, r}, {p, s}}

yields
{{p}, {q}, {¬q, r}}.

Unit propagation for {q} to this yields:

{{p}, {q}, {r}}.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 66 / 82

An inference engine with a natural language interface

Inference Rule: Unit Propagation

If one member of a clause set is a singleton {l}, then:

• remove every other clause containing l from the clause set;

• remove l from every clause in which it occurs.

The result of applying this rule is a simplified equivalent clause set.

Unit propagation for {p} to

{{p}, {¬p, q}, {¬q, r}, {p, s}}

yields
{{p}, {q}, {¬q, r}}.

Unit propagation for {q} to this yields:

{{p}, {q}, {r}}.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 66 / 82

An inference engine with a natural language interface

HORNSAT

• The Horn fragment of propositional logic consists of all clause sets
where every clause has at most one positive literal.

• Satisfiability for syllogistic forms containing exactly one existental
statement translates to the Horn fragment of propositional logic.

• HORNSAT is the problem of testing Horn clause sets for satisfiability.

• If unit propagation yields a clause set in which units {l}, {l} occur,
the original clause set is unsatisfiable.

• Otherwise the units in the result determine a satisfying valuation.

• Recipe: for all units {l} occurring in the final clause set, map their
proposition letter to the truth value that makes l true. Map all other
proposition letters to false.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 67 / 82

An inference engine with a natural language interface

HORNSAT

• The Horn fragment of propositional logic consists of all clause sets
where every clause has at most one positive literal.

• Satisfiability for syllogistic forms containing exactly one existental
statement translates to the Horn fragment of propositional logic.

• HORNSAT is the problem of testing Horn clause sets for satisfiability.

• If unit propagation yields a clause set in which units {l}, {l} occur,
the original clause set is unsatisfiable.

• Otherwise the units in the result determine a satisfying valuation.

• Recipe: for all units {l} occurring in the final clause set, map their
proposition letter to the truth value that makes l true. Map all other
proposition letters to false.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 67 / 82

An inference engine with a natural language interface

HORNSAT

• The Horn fragment of propositional logic consists of all clause sets
where every clause has at most one positive literal.

• Satisfiability for syllogistic forms containing exactly one existental
statement translates to the Horn fragment of propositional logic.

• HORNSAT is the problem of testing Horn clause sets for satisfiability.

• If unit propagation yields a clause set in which units {l}, {l} occur,
the original clause set is unsatisfiable.

• Otherwise the units in the result determine a satisfying valuation.

• Recipe: for all units {l} occurring in the final clause set, map their
proposition letter to the truth value that makes l true. Map all other
proposition letters to false.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 67 / 82

An inference engine with a natural language interface

HORNSAT

• The Horn fragment of propositional logic consists of all clause sets
where every clause has at most one positive literal.

• Satisfiability for syllogistic forms containing exactly one existental
statement translates to the Horn fragment of propositional logic.

• HORNSAT is the problem of testing Horn clause sets for satisfiability.

• If unit propagation yields a clause set in which units {l}, {l} occur,
the original clause set is unsatisfiable.

• Otherwise the units in the result determine a satisfying valuation.

• Recipe: for all units {l} occurring in the final clause set, map their
proposition letter to the truth value that makes l true. Map all other
proposition letters to false.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 67 / 82

An inference engine with a natural language interface

HORNSAT

• The Horn fragment of propositional logic consists of all clause sets
where every clause has at most one positive literal.

• Satisfiability for syllogistic forms containing exactly one existental
statement translates to the Horn fragment of propositional logic.

• HORNSAT is the problem of testing Horn clause sets for satisfiability.

• If unit propagation yields a clause set in which units {l}, {l} occur,
the original clause set is unsatisfiable.

• Otherwise the units in the result determine a satisfying valuation.

• Recipe: for all units {l} occurring in the final clause set, map their
proposition letter to the truth value that makes l true. Map all other
proposition letters to false.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 67 / 82

An inference engine with a natural language interface

HORNSAT

• The Horn fragment of propositional logic consists of all clause sets
where every clause has at most one positive literal.

• Satisfiability for syllogistic forms containing exactly one existental
statement translates to the Horn fragment of propositional logic.

• HORNSAT is the problem of testing Horn clause sets for satisfiability.

• If unit propagation yields a clause set in which units {l}, {l} occur,
the original clause set is unsatisfiable.

• Otherwise the units in the result determine a satisfying valuation.

• Recipe: for all units {l} occurring in the final clause set, map their
proposition letter to the truth value that makes l true. Map all other
proposition letters to false.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 67 / 82

An inference engine with a natural language interface

HORNSAT

• The Horn fragment of propositional logic consists of all clause sets
where every clause has at most one positive literal.

• Satisfiability for syllogistic forms containing exactly one existental
statement translates to the Horn fragment of propositional logic.

• HORNSAT is the problem of testing Horn clause sets for satisfiability.

• If unit propagation yields a clause set in which units {l}, {l} occur,
the original clause set is unsatisfiable.

• Otherwise the units in the result determine a satisfying valuation.

• Recipe: for all units {l} occurring in the final clause set, map their
proposition letter to the truth value that makes l true. Map all other
proposition letters to false.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 67 / 82

An inference engine with a natural language interface

Module Declaration

module Syll where

import Data.List

import Data.Char

import System.IO

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 68 / 82

An inference engine with a natural language interface

Literals, Clauses

data Lit = Pos String | Neg String deriving Eq

instance Show Lit where

show (Pos x) = x

show (Neg x) = ’-’: x

neg :: Lit -> Lit

neg (Pos x) = Neg x

neg (Neg x) = Pos x

type Clause = [Lit]

names :: [Clause] -> [String]

names = sort . nub . map nm . concat

where nm (Pos x) = x

nm (Neg x) = x

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 69 / 82

An inference engine with a natural language interface

Unit Propagation (1)

unitProp :: Lit -> [Clause] -> [Clause]

unitProp x cs = concat (map (unitP x) cs)

unitP :: Lit -> Clause -> [Clause]

unitP x ys = if elem x ys then []

else

if elem (neg x) ys

then [delete (neg x) ys]

else [ys]

unit :: Clause -> Bool

unit [x] = True

unit _ = False

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 70 / 82

An inference engine with a natural language interface

Unit Propagation (2)

propagate :: [Clause] -> Maybe ([Lit],[Clause])

propagate cls =

prop [] (concat (filter unit cls)) (filter (not.unit) cls)

where

prop :: [Lit] -> [Lit] -> [Clause]

-> Maybe ([Lit],[Clause])

prop xs [] clauses = Just (xs,clauses)

prop xs (y:ys) clauses =

if elem (neg y) xs

then Nothing

else prop (y:xs)(ys++ newlits) clauses ’ where

newclauses = unitProp y clauses

zs = filter unit newclauses

clauses ’ = newclauses \\ zs

newlits = concat zs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 71 / 82

An inference engine with a natural language interface

Unit Propagation (2)

propagate :: [Clause] -> Maybe ([Lit],[Clause])

propagate cls =

prop [] (concat (filter unit cls)) (filter (not.unit) cls)

where

prop :: [Lit] -> [Lit] -> [Clause]

-> Maybe ([Lit],[Clause])

prop xs [] clauses = Just (xs,clauses)

prop xs (y:ys) clauses =

if elem (neg y) xs

then Nothing

else prop (y:xs)(ys++ newlits) clauses ’ where

newclauses = unitProp y clauses

zs = filter unit newclauses

clauses ’ = newclauses \\ zs

newlits = concat zs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 71 / 82

An inference engine with a natural language interface

KBs, Statements

type KB = ([Clause],[[Clause]])

-- first element: universal statements

-- second element: one clause list per existential statement

domain :: KB -> [Lit]

domain (xs,yss) =

map (\ x -> Pos x) zs ++ map (\ x -> Neg x) zs

where zs = names (xs ++ concat yss)

type Class = Lit

data Statement =

All Class Class | No Class Class

| Some Class Class | SomeNot Class Class

| AreAll Class Class | AreNo Class Class

| AreAny Class Class | AnyNot Class Class

| What Class

deriving Eq

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 72 / 82

An inference engine with a natural language interface

Statement Display

instance Show Statement where

show (All as bs) =

"All " ++ show as ++ " are " ++ show bs ++ "."

show (No as bs) =

"No " ++ show as ++ " are " ++ show bs ++ "."

show (Some as bs) =

"Some " ++ show as ++ " are " ++ show bs ++ "."

show (SomeNot as bs) =

"Some " ++ show as ++ " are not " ++ show bs ++ "."

show (AreAll as bs) =

"Are all " ++ show as ++ show bs ++ "?"

show (AreNo as bs) =

"Are no " ++ show as ++ show bs ++ "?"

show (AreAny as bs) =

"Are any " ++ show as ++ show bs ++ "?"

show (AnyNot as bs) =

"Are any " ++ show as ++ " not " ++ show bs ++ "?"

show (What as) = "What about " ++ show as ++ "?"

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 73 / 82

An inference engine with a natural language interface

Statement Classification, Query Negation

isQuery :: Statement -> Bool

isQuery (AreAll _ _) = True

isQuery (AreNo _ _) = True

isQuery (AreAny _ _) = True

isQuery (AnyNot _ _) = True

isQuery (What _) = True

isQuery _ = False

negat :: Statement -> Statement

negat (AreAll as bs) = AnyNot as bs

negat (AreNo as bs) = AreAny as bs

negat (AreAny as bs) = AreNo as bs

negat (AnyNot as bs) = AreAll as bs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 74 / 82

An inference engine with a natural language interface

The ⊂ Relation

subsetRel :: KB -> [(Class ,Class)]

subsetRel kb =

[(x,y) | x <- classes , y <- classes ,

propagate ([x]:[neg y]: fst kb) == Nothing]

where classes = domain kb

If R ⊆ A2 and x ∈ A, then xR := {y | (x , y) ∈ R}. This is called a right
section of a relation.

rSection :: Eq a => a -> [(a,a)] -> [a]

rSection x r = [y | (z,y) <- r, x == z]

The supersets of a class are given by a right section of the subset relation.
I.e. the supersets of a class are all classes of which it is a subset.

supersets :: Class -> KB -> [Class]

supersets cl kb = rSection cl (subsetRel kb)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 75 / 82

An inference engine with a natural language interface

The ⊂ Relation

subsetRel :: KB -> [(Class ,Class)]

subsetRel kb =

[(x,y) | x <- classes , y <- classes ,

propagate ([x]:[neg y]: fst kb) == Nothing]

where classes = domain kb

If R ⊆ A2 and x ∈ A, then xR := {y | (x , y) ∈ R}. This is called a right
section of a relation.

rSection :: Eq a => a -> [(a,a)] -> [a]

rSection x r = [y | (z,y) <- r, x == z]

The supersets of a class are given by a right section of the subset relation.
I.e. the supersets of a class are all classes of which it is a subset.

supersets :: Class -> KB -> [Class]

supersets cl kb = rSection cl (subsetRel kb)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 75 / 82

An inference engine with a natural language interface

The ⊂ Relation

subsetRel :: KB -> [(Class ,Class)]

subsetRel kb =

[(x,y) | x <- classes , y <- classes ,

propagate ([x]:[neg y]: fst kb) == Nothing]

where classes = domain kb

If R ⊆ A2 and x ∈ A, then xR := {y | (x , y) ∈ R}. This is called a right
section of a relation.

rSection :: Eq a => a -> [(a,a)] -> [a]

rSection x r = [y | (z,y) <- r, x == z]

The supersets of a class are given by a right section of the subset relation.
I.e. the supersets of a class are all classes of which it is a subset.

supersets :: Class -> KB -> [Class]

supersets cl kb = rSection cl (subsetRel kb)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 75 / 82

An inference engine with a natural language interface

The Relation of Having an Non-empty Intersection

intersectRel :: KB -> [(Class ,Class)]

intersectRel kb@(xs ,yys) =

nub [(x,y) | x <- classes , y <- classes , lits <- litsList ,

elem x lits && elem y lits]

where

classes = domain kb

litsList =

[maybe [] fst (propagate (ys++xs)) | ys <- yys]

intersectionsets :: Class -> KB -> [Class]

intersectionsets cl kb = rSection cl (intersectRel kb)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 76 / 82

An inference engine with a natural language interface

The Relation of Having an Non-empty Intersection

intersectRel :: KB -> [(Class ,Class)]

intersectRel kb@(xs ,yys) =

nub [(x,y) | x <- classes , y <- classes , lits <- litsList ,

elem x lits && elem y lits]

where

classes = domain kb

litsList =

[maybe [] fst (propagate (ys++xs)) | ys <- yys]

intersectionsets :: Class -> KB -> [Class]

intersectionsets cl kb = rSection cl (intersectRel kb)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 76 / 82

An inference engine with a natural language interface

Caution about KB Query

There are three possibilities:

• derive kb stmt is true. This means that the statement is derivable,
hence true.

• derive kb (neg stmt) is true. This means that the negation of
stmt is derivable, hence true. So stmt is false.

• neither derive kb stmt nor derive kb (neg stmt) is true. This
means that the knowledge base has no information about stmt.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 77 / 82

An inference engine with a natural language interface

Caution about KB Query

There are three possibilities:

• derive kb stmt is true. This means that the statement is derivable,
hence true.

• derive kb (neg stmt) is true. This means that the negation of
stmt is derivable, hence true. So stmt is false.

• neither derive kb stmt nor derive kb (neg stmt) is true. This
means that the knowledge base has no information about stmt.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 77 / 82

An inference engine with a natural language interface

Caution about KB Query

There are three possibilities:

• derive kb stmt is true. This means that the statement is derivable,
hence true.

• derive kb (neg stmt) is true. This means that the negation of
stmt is derivable, hence true. So stmt is false.

• neither derive kb stmt nor derive kb (neg stmt) is true. This
means that the knowledge base has no information about stmt.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 77 / 82

An inference engine with a natural language interface

Caution about KB Query

There are three possibilities:

• derive kb stmt is true. This means that the statement is derivable,
hence true.

• derive kb (neg stmt) is true. This means that the negation of
stmt is derivable, hence true. So stmt is false.

• neither derive kb stmt nor derive kb (neg stmt) is true. This
means that the knowledge base has no information about stmt.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 77 / 82

An inference engine with a natural language interface

Derivability

derive :: KB -> Statement -> Bool

derive kb (AreAll as bs) = bs ‘elem ‘ (supersets as kb)

derive kb (AreNo as bs) = (neg bs) ‘elem ‘ (supersets as kb)

derive kb (AreAny as bs) = bs ‘elem ‘ (intersectionsets as kb)

derive kb (AnyNot as bs) = (neg bs) ‘elem ‘

(intersectionsets as kb)

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 78 / 82

An inference engine with a natural language interface

Building a KB

• To build a knowledge base we need a function for updating an
existing knowledge base with a statement.

• If the update is successful, we want an updated knowledge base.

• If the update is not successful, we want to get an indication of failure.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 79 / 82

An inference engine with a natural language interface

Building a KB

• To build a knowledge base we need a function for updating an
existing knowledge base with a statement.

• If the update is successful, we want an updated knowledge base.

• If the update is not successful, we want to get an indication of failure.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 79 / 82

An inference engine with a natural language interface

Building a KB

• To build a knowledge base we need a function for updating an
existing knowledge base with a statement.

• If the update is successful, we want an updated knowledge base.

• If the update is not successful, we want to get an indication of failure.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 79 / 82

An inference engine with a natural language interface

Building a KB

• To build a knowledge base we need a function for updating an
existing knowledge base with a statement.

• If the update is successful, we want an updated knowledge base.

• If the update is not successful, we want to get an indication of failure.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 79 / 82

An inference engine with a natural language interface

Example: Update with an ‘All’ statement

The update function checks for possible inconsistencies. E.g., a request to
add an A ⊆ B fact to the knowledge base leads to an inconsistency if
A 6⊆ B is already derivable.

update :: Statement -> KB -> Maybe (KB,Bool)

update (All as bs) kb@(xs,yss)

| bs’ ‘elem ‘ (intersectionsets as kb) = Nothing

| bs ‘elem ‘ (supersets as kb) = Just (kb ,False)

| otherwise = Just (([as ’,bs]:xs ,yss),True)

where

as’ = neg as

bs’ = neg bs

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 80 / 82

An inference engine with a natural language interface

Demo

. . .

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 81 / 82

An inference engine with a natural language interface

Conclusions

• Mini-case of computational semantics. What is the use of this?

• Cognitive research focusses on this kind of quantifier reasoning . . .

• Can this be used to meet cognitive realities? Links with cognition by
refinement of this calculus . . .

• The “natural logic for natural language” enterprise . . .

• Towards Rational Reconstruction of Cognitive Processing

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 82 / 82

An inference engine with a natural language interface

Conclusions

• Mini-case of computational semantics. What is the use of this?

• Cognitive research focusses on this kind of quantifier reasoning . . .

• Can this be used to meet cognitive realities? Links with cognition by
refinement of this calculus . . .

• The “natural logic for natural language” enterprise . . .

• Towards Rational Reconstruction of Cognitive Processing

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 82 / 82

An inference engine with a natural language interface

Conclusions

• Mini-case of computational semantics. What is the use of this?

• Cognitive research focusses on this kind of quantifier reasoning . . .

• Can this be used to meet cognitive realities? Links with cognition by
refinement of this calculus . . .

• The “natural logic for natural language” enterprise . . .

• Towards Rational Reconstruction of Cognitive Processing

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 82 / 82

An inference engine with a natural language interface

Conclusions

• Mini-case of computational semantics. What is the use of this?

• Cognitive research focusses on this kind of quantifier reasoning . . .

• Can this be used to meet cognitive realities? Links with cognition by
refinement of this calculus . . .

• The “natural logic for natural language” enterprise . . .

• Towards Rational Reconstruction of Cognitive Processing

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 82 / 82

An inference engine with a natural language interface

Conclusions

• Mini-case of computational semantics. What is the use of this?

• Cognitive research focusses on this kind of quantifier reasoning . . .

• Can this be used to meet cognitive realities? Links with cognition by
refinement of this calculus . . .

• The “natural logic for natural language” enterprise . . .

• Towards Rational Reconstruction of Cognitive Processing

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 82 / 82

An inference engine with a natural language interface

Conclusions

• Mini-case of computational semantics. What is the use of this?

• Cognitive research focusses on this kind of quantifier reasoning . . .

• Can this be used to meet cognitive realities? Links with cognition by
refinement of this calculus . . .

• The “natural logic for natural language” enterprise . . .

• Towards Rational Reconstruction of Cognitive Processing

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 82 / 82

	Outline
	The formal study of natural language
	Course overview
	Functional programming with Haskell
	An inference engine with a natural language interface

