
Monoids

Sept. 20 2024

Functions

• Consider the addition function:

• 1 + 1 = 2

• 2 + 2 = 4

• (+) :: Num a => a -> a -> a

Functions

• Consider the addition function:

• 1 + 1 = 2

• 2 + 2 = 4

• (+) :: Num a => a -> a -> a

Functions

• Consider the addition function:

• 1 + 1 = 2

• 2 + 2 = 4

• (+) :: Num a => a -> a -> a

Functions

• Consider the addition function:

• 1 + 1 = 2

• 2 + 2 = 4

• (+) :: Num a => a -> a -> a

Functions

• Consider the addition function:

• 1 + 1 = 2

• 2 + 2 = 4

• (+) :: Int -> Int -> Int

Functions

• Addition by 0:

• 0 + x = x

• x + 0 = x

• Addition of three numbers:

• (x + y) + z = x + (y + z)

Functions

• Addition by 0:

• 0 + x = x

• x + 0 = x

• Addition of three numbers:

• (x + y) + z = x + (y + z)

Functions

• Addition by 0:

• 0 + x = x

• x + 0 = x

• Addition of three numbers:

• (x + y) + z = x + (y + z)

Functions

• Addition by 0:

• 0 + x = x

• x + 0 = x

• Addition of three numbers:

• (x + y) + z = x + (y + z)

Functions

• Addition by 0:

• 0 + x = x

• x + 0 = x

• Addition of three numbers:

• (x + y) + z = x + (y + z)

Functions

• Addition by 0:

• Right Identity: 0 + x = x

• Left Identity: x + 0 = x

• Addition of three numbers:

• Associativity: (x + y) + z = x + (y + z)

Monoids

• Wikipedia: Suppose that S is a set and • is some binary
operation S × S → S , then S with • is a monoid if it satisfies
the following two axioms:

• Associativity: For all a, b and c in S , the equation
(a • b) • c = a • (b • c) holds.
• Identity element: There exists an element e in S such

that for every element a in S , the equations
e • a = a • e = a hold.

Monoids

• Suppose that m is a type and mappend is some binary function
m -> m -> m, then m with mappend is a monoid if it satisfies
the following two axioms:

• Associativity: For all x, y and z in m, the equation
(x ‘mappend‘ y) ‘mappend‘ z =

x ‘mappend‘ (y ‘mappend‘ z) holds.
• Identity element: There exists an element mempty in m

such that for every element x in m, the equations
mempty ‘mappend‘ x = x ‘mappend‘ mempty = x

hold.

Monoids

• class Monoid m where

mempty :: m

mappend :: m -> m -> m

mconcat :: [m] -> m

mconcat = foldr mappend mempty

Monoids

• class Monoid m where

mempty :: m (zero)

mappend :: m -> m -> m (plus)

mconcat :: [m] -> m (sum)

mconcat = foldr mappend mempty

Lists are Monoids

• instance Monoid [a] where

mempty = []

mappend = (++)

• mconcat = concat

Lists are Monoids

• instance Monoid [a] where

mempty = []

mappend = (++)

• mconcat = concat

Lists of a are Monoids

• instance Monoid [a] where

mempty = []

mappend = (++)

• mconcat = concat

Strings are Monoids

• instance Monoid String where

mempty = ""

mappend = (++)

• mconcat = concat

Languages are Monoids

• instance Monoid String where

mempty = ""

mappend = (++)

• mconcat = concat

Strings are Monoids

• "" ++ "the" = "the"

• "the" ++ "" = "the"

• ("the " ++ "dog ") ++ "barked" =

"the " ++ ("dog " ++ "barked")

Strings are Monoids

• "" ++ "the" = "the"

• "the" ++ "" = "the"

• ("the " ++ "dog ") ++ "barked" =

"the " ++ ("dog " ++ "barked")

Strings are Monoids

• "" ++ "the" = "the"

• "the" ++ "" = "the"

• ("the " ++ "dog ") ++ "barked" =

"the " ++ ("dog " ++ "barked")

Monoids

• Other examples of monoids:

• Numbers (Product, Sum)
• Bool (Any, All)
• Ordering

• Maybe

• Functions (r -> r) (Endo)

Monoids

• Other examples of monoids:

• Numbers (Product, Sum)

• Bool (Any, All)
• Ordering

• Maybe

• Functions (r -> r) (Endo)

Monoids

• Other examples of monoids:

• Numbers (Product, Sum)
• Bool (Any, All)

• Ordering

• Maybe

• Functions (r -> r) (Endo)

Monoids

• Other examples of monoids:

• Numbers (Product, Sum)
• Bool (Any, All)
• Ordering

• Maybe

• Functions (r -> r) (Endo)

Monoids

• Other examples of monoids:

• Numbers (Product, Sum)
• Bool (Any, All)
• Ordering

• Maybe

• Functions (r -> r) (Endo)

Monoids

• Other examples of monoids:

• Numbers (Product, Sum)
• Bool (Any, All)
• Ordering

• Maybe

• Functions (r -> r) (Endo)

Functions are Monoids

• instance Monoid (a -> a) where

mempty = id

mappend = (.)

Functions are Monoids

• instance Monoid (Endo a) where

mempty = Endo id

Endo g ‘mappend‘ Endo f = Endo (g . f)

• newtype Endo a = Endo { appEndo :: a -> a }

Functions are Monoids

• instance Monoid (Endo a) where

mempty = Endo id

Endo g ‘mappend‘ Endo f = Endo (g . f)

• newtype Endo a = Endo { appEndo :: a -> a }

Functions are Monoids

• id . f = f

• f . id = f

• (f . g) . h = f . (g . h)

Functions are Monoids

• id . f = f

• f . id = f

• (f . g) . h = f . (g . h)

Functions are Monoids

• id . f = f

• f . id = f

• (f . g) . h = f . (g . h)

Folds

• mconcat :: Monoid m => [m] -> m

• mconcat = foldr mappend mempty

Folds

• mconcat :: Monoid m => [m] -> m

• mconcat combines a list of monoid values by mappending them

• What if we want to combine a sequence of arbitrary values?

• foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m

Folds

• mconcat :: Monoid m => [m] -> m

• mconcat combines a list of monoid values by mappending them

• What if we want to combine a sequence of arbitrary values?

• foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m

Folds

• mconcat :: Monoid m => [m] -> m

• mconcat combines a list of monoid values by mappending them

• What if we want to combine a sequence of arbitrary values?

• foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m

Folds

• mconcat :: Monoid m => [m] -> m

• mconcat combines a list of monoid values by mappending them

• What if we want to combine a sequence of arbitrary values?

• foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m

• Sequence (e.g. list, tree)

Folds

• mconcat :: Monoid m => [m] -> m

• mconcat combines a list of monoid values by mappending them

• What if we want to combine a sequence of arbitrary values?

• foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m

• Sequence (e.g. list, tree)
• Function that converts arbitrary values to monoid values

Folds

• mconcat :: Monoid m => [m] -> m

• mconcat combines a list of monoid values by mappending them

• What if we want to combine a sequence of arbitrary values?

• foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m

• Sequence (e.g. list, tree)
• Function that converts arbitrary values to monoid values

• foldMap = foldr (mappend . f) mempty

Folds

• mconcat :: Monoid m => [m] -> m

• mconcat combines a list of monoid values by mappending them

• What if we want to combine a sequence of arbitrary values?

• foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m

• Sequence (e.g. list, tree)
• Function that converts arbitrary values to monoid values

• foldMap combines a list of arbitrary values by converting them into
monoid values and mappending them

• What if we don’t have a conversion function?

• :: Foldable t => (a -> Endo b) -> t a -> Endo b

Folds

• mconcat :: Monoid m => [m] -> m

• mconcat combines a list of monoid values by mappending them

• What if we want to combine a sequence of arbitrary values?

• foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m

• Sequence (e.g. list, tree)
• Function that converts arbitrary values to monoid values

• foldMap combines a list of arbitrary values by converting them into
monoid values and mappending them

• What if we don’t have a conversion function?

• :: Foldable t => (a -> Endo b) -> t a -> Endo b

Folds

• mconcat :: Monoid m => [m] -> m

• mconcat combines a list of monoid values by mappending them

• What if we want to combine a sequence of arbitrary values?

• foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m

• Sequence (e.g. list, tree)
• Function that converts arbitrary values to monoid values

• foldMap combines a list of arbitrary values by converting them into
monoid values and mappending them

• What if we don’t have a conversion function?

• :: Foldable t => (a -> Endo b) -> t a -> Endo b

Folds

• mconcat :: Monoid m => [m] -> m

• mconcat combines a list of monoid values by mappending them

• What if we want to combine a sequence of arbitrary values?

• foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m

• Sequence (e.g. list, tree)
• Function that converts arbitrary values to monoid values

• foldMap combines a list of arbitrary values by converting them into
monoid values and mappending them

• What if we don’t have a conversion function?

• :: Foldable t => (a -> b -> b) -> t a -> b -> b

Folds

• mconcat :: Monoid m => [m] -> m

• mconcat combines a list of monoid values by mappending them

• What if we want to combine a sequence of arbitrary values?

• foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m

• Sequence (e.g. list, tree)
• Function that converts arbitrary values to monoid values

• foldMap combines a list of arbitrary values by converting them into
monoid values and mappending them

• What if we don’t have a conversion function?

• :: Foldable t => (a -> b -> b) -> t a -> b -> b

• Accumulator value

Folds

• mconcat :: Monoid m => [m] -> m

• mconcat combines a list of monoid values by mappending them

• What if we want to combine a sequence of arbitrary values?

• foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m

• Sequence (e.g. list, tree)
• Function that converts arbitrary values to monoid values

• foldMap combines a list of arbitrary values by converting them into
monoid values and mappending them

• What if we don’t have a conversion function?

• :: Foldable t => (a -> b -> b) -> t a -> b -> b

• Accumulator value
• Function that updates the accumulator with the arbitrary value

Folds

• mconcat :: Monoid m => [m] -> m

• mconcat combines a list of monoid values by mappending them

• What if we want to combine a sequence of arbitrary values?

• foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m

• Sequence (e.g. list, tree)
• Function that converts arbitrary values to monoid values

• foldMap combines a list of arbitrary values by converting them into
monoid values and mappending them

• What if we don’t have a conversion function?

• :: Foldable t => (a -> b -> b) -> t a -> b -> b

• Accumulator value
• Function that updates the accumulator with the arbitrary value
• Starting accumulator value

Folds

• mconcat :: Monoid m => [m] -> m

• mconcat combines a list of monoid values by mappending them

• What if we want to combine a sequence of arbitrary values?

• foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m

• Sequence (e.g. list, tree)
• Function that converts arbitrary values to monoid values

• foldMap combines a list of arbitrary values by converting them into
monoid values and mappending them

• What if we don’t have a conversion function?

• :: Foldable t => (a -> b -> b) -> t a -> b -> b

• Accumulator value
• Function that updates the accumulator with the arbitrary value
• Starting accumulator value
• Result value

Folds

• mconcat :: Monoid m => [m] -> m

• mconcat combines a list of monoid values by mappending them

• What if we want to combine a sequence of arbitrary values?

• foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m

• Sequence (e.g. list, tree)
• Function that converts arbitrary values to monoid values

• foldMap combines a list of arbitrary values by converting them into
monoid values and mappending them

• What if we don’t have a conversion function?

• foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

• Accumulator value
• Function that updates the accumulator with the arbitrary value
• Starting accumulator value
• Result value

List Comprehensions

• [1,2,3,4] = [a + b |

a <- [0,2],

b <- [1,2]]

= do

a <- [0,2]

b <- [1,2]

return $ a + b

List Comprehensions

• [1,2,3,4] = [a + b |

a <- [0,2],

b <- [1,2]]

= do

a <- [0,2]

b <- [1,2]

return $ a + b

List Comprehensions

• [1,2,3,4] = [a + b |

a <- [0,2],

b <- [1,2],

even $ a + b]

= do

a <- [0,2]

b <- [1,2]

return $ a + b

List Comprehensions

• [2, 4] = [a + b |

a <- [0,2],

b <- [1,2],

even $ a + b]

= do

a <- [0,2]

b <- [1,2]

return $ a + b

List Comprehensions

• [2, 4] = [a + b |

a <- [0,2],

b <- [1,2],

even $ a + b]

= do

a <- [0,2]

b <- [1,2]

guard (even $ a + b)

return $ a + b

MonadPluses

• class Monad m => MonadPlus m where

mzero :: m a

mplus :: m a -> m a -> m a

MonadPluses

• class Monad m => MonadPlus m where

mzero :: m a (mempty)

mplus :: m a -> m a -> m a (mappend)

MonadPluses

• class (Monad m, Monoid m a) => MonadPlus m where

mzero :: m a (mempty)

mplus :: m a -> m a -> m a (mappend)

MonadPluses

• class Monad m => MonadPlus m where

mzero :: m a (mempty)

mplus :: m a -> m a -> m a (mappend)

Lists are MonadPluses

• instance MonadPlus [] where

mzero = []

mplus = (++)

Guards

• guard :: (MonadPlus m) => Bool -> m ()

guard True = return ()

guard False = mzero

Guards

• [2,4] = do

a <- [0,2]

b <- [1,2]

guard (even $ a + b)

return $ a + b

Guards

• [2,4] =

[0,2] >>= \a -> do

b <- [1,2]

guard (even $ a + b)

return $ a + b

Guards

• [2,4] =

[0,2] >>= \a ->

[1,2] >>= \b -> do

guard (even $ a + b)

return $ a + b

Guards

• [2,4] =

[0,2] >>= \a ->

[1,2] >>= \b ->

guard (even $ a + b) >>= \ -> do

return $ a + b

Guards

• [2,4] =

[0,2] >>= \a ->

[1,2] >>= \b ->

guard (even $ a + b) >>= \ ->

return $ a + b

Guards

• [2,4] =

concat (map (\a ->

[1,2] >>= \b ->

guard (even $ a + b) >>= \ ->

return $ a + b) [0,2])

Guards

• [2,4] = concat [

([1,2] >>= \b ->

guard (even $ 0 + b) >>= \ ->

return $ 0 + b),

([1,2] >>= \b ->

guard (even $ 2 + b) >>= \ ->

return $ 2 + b)

]

Guards

• [2,4] = concat [

concat (map (\b ->

guard (even $ 0 + b) >>= \ ->

return $ 0 + b) [1,2]),

concat (map (\b ->

guard (even $ 2 + b) >>= \ ->

return $ 2 + b) [1,2])

]

Guards

• [2,4] = concat [

concat [(guard (even $ 0 + 1) >>= \ ->

return $ 0 + 1),

(guard (even $ 0 + 2) >>= \ ->

return $ 0 + 2)],

concat [(guard (even $ 2 + 1) >>= \ ->

return $ 2 + 1),

(guard (even $ 2 + 2) >>= \ ->

return $ 2 + 2)]

]

Guards

• [2,4] = concat [

concat [(guard (even $ 1) >>= \ ->

return $ 1),

(guard (even $ 2) >>= \ ->

return $ 2)],

concat [(guard (even $ 3) >>= \ ->

return $ 3),

(guard (even $ 4) >>= \ ->

return $ 4)]

]

Guards

• [2,4] = concat [

concat [(guard False >>= \ ->

[1]),

(guard True >>= \ ->

[2])],

concat [(guard False >>= \ ->

[3]),

(guard True >>= \ ->

[4])]

]

Guards

• [2,4] = concat [

concat [(mzero >>= \ ->

[1]),

(return () >>= \ ->

[2])],

concat [(mzero >>= \ ->

[3]),

(return () >>= \ ->

[4])]

]

Guards

• [2,4] = concat [

concat [([] >>= \ ->

[1]),

([()] >>= \ ->

[2])],

concat [([] >>= \ ->

[3]),

([()] >>= \ ->

[4])]

]

Guards

• [2,4] = concat [

concat [concat (map (\ -> [1]) []),

concat (map (\ -> [2]) [()])],

concat [concat (map (\ -> [3]) []),

concat (map (\ -> [4]) [()])]

]

Guards

• [2,4] = concat [

concat [concat [],

concat [[2]]],

concat [concat [],

concat [[4]]]

]

Guards

• [2,4] = concat [

concat [[],

[2]],

concat [[],

[4]]

]

Guards

• [2,4] = concat [[2],[4]]

Guards

• [2,4] = [2,4]

