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In a nutshell

Compositional distributional models of meaning (CDMs)
extend distributional semantics to the phrase/sentence level.

They provide a function that produces a vectorial
representation of the meaning of a phrase or a sentence from
the distributional vectors of its words.

Useful in every NLP task: sentence similarity, paraphrase
detection, sentiment analysis, machine translation etc.

In this tutorial:

We review three generic classes of CDMs: vector mixtures,
tensor-based models and neural models.
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Computers and meaning

How can we define Computational Linguistics?

Computational linguistics is the scientific and engineering
discipline concerned with understanding written and
spoken language from a computational perspective.

—Stanford Encyclopedia of Philosophy1

1http://plato.stanford.edu
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Compositional semantics

The principle of compositionality

The meaning of a complex expression is determined by the
meanings of its parts and the rules used for combining them.

Montague Grammar: A systematic way of processing
fragments of the English language in order to get semantic
representations capturing their meaning.

There is in my opinion no important theoretical
difference between natural languages and the
artificial languages of logicians.

—Richard Montague, Universal Grammar (1970)
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Syntax-to-semantics correspondence (1/2)

A lexicon:

(1) a. every ` Dt : λP.λQ.∀x [P(x)→ Q(x)]

b. man ` N : λy .man(y)

c. walks ` VI : λz .walk(z)

A parse tree, so syntax guides the semantic composition:

S

NP

Dt

Every

N

man

V IN

walks

NP→ Dt N : [[N]]([[Dt]])
S → NP VIN : [[VIN ]]([[NP]])
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Syntax-to-semantics correspondence (2/2)

Logical forms of compounds are computed via β-reduction:

S
∀x [man(x)→ walk(x)]

NP
λQ.∀x [man(x)→ Q(x)]

Dt
λP.λQ.∀x [P(x)→ Q(x)]

Every

N
λy .man(y)

man

V IN

λz .walk(z)

walks

The semantic value of a sentence can be true or false.

Can we do better than that?
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The meaning of words

Distributional hypothesis

Words that occur in similar contexts have similar meanings
[Harris, 1958].

The functional interplay of philosophy and ? should, as a minimum, guarantee...
...and among works of dystopian ? fiction...

The rapid advance in ? today suggests...
...calculus, which are more popular in ? -oriented schools.

But because ? is based on mathematics...
...the value of opinions formed in ? as well as in the religions...

...if ? can discover the laws of human nature....
...is an art, not an exact ? .

...factors shaping the future of our civilization: ? and religion.
...certainty which every new discovery in ? either replaces or reshapes.

...if the new technology of computer ? is to grow significantly
He got a ? scholarship to Yale.

...frightened by the powers of destruction ? has given...
...but there is also specialization in ? and technology...
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The meaning of words

Distributional hypothesis

Words that occur in similar contexts have similar meanings
[Harris, 1958].

The functional interplay of philosophy and science should, as a minimum, guarantee...
...and among works of dystopian science fiction...

The rapid advance in science today suggests...
...calculus, which are more popular in science -oriented schools.

But because science is based on mathematics...
...the value of opinions formed in science as well as in the religions...

...if science can discover the laws of human nature....
...is an art, not an exact science .

...factors shaping the future of our civilization: science and religion.
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Distributional models of meaning

A word is a vector of co-occurrence statistics with every other
word in a selected subset of the vocabulary:

milk

cute

dog

bank

money

12

8

5

0

1

cat

cat

dog

account

money

pet

Semantic relatedness is usually based on cosine similarity:

sim(−→v ,−→u ) = cos θ−→v ,−→u =
〈−→v · −→u 〉
‖−→v ‖‖−→u ‖
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A real vector space
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The necessity for a unified model

Distributional models of meaning are quantitative, but they
do not scale up to phrases and sentences; there is not enough
data:

Even if we had an infinitely large corpus,
what the context of a sentence would be?
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The role of compositionality

Compositional distributional models

We can produce a sentence vector by composing the vectors
of the words in that sentence.

−→s = f (−→w1,
−→w2, . . . ,

−→wn)

Three generic classes of CDMs:

Vector mixture models [Mitchell and Lapata (2010)]

Tensor-based models [Coecke, Sadrzadeh, Clark (2010); Baroni and

Zamparelli (2010)]

Neural models [Socher et al. (2012); Kalchbrenner et al. (2014)]
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A CDMs hierarchy
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Applications (1/2)

Why CDMs are important?

The problem of producing robust representations for the
meaning of phrases and sentences is at the heart of every
task related to natural language.

Paraphrase detection

Problem: Given two sentences, decide if they say the same
thing in different words

Solution: Measure the cosine similarity between the sentence
vectors

Sentiment analysis

Problem: Extract the general sentiment from a sentence or a
document

Solution: Train a classifier using sentence vectors as input
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Applications (2/2)

Textual entailment

Problem: Decide if one sentence logically infers a different one

Solution: Examine the feature inclusion properties of the
sentence vectors

Machine translation

Problem: Automatically translate one sentence into a different
language

Solution: Encode the source sentence into a vector, then use
this vector to decode a surface form into the target language

And so on. Many other potential applications exist...
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Element-wise vector composition

The easiest way to compose two vectors is by working
element-wise [Mitchell and Lapata (2010)]:

−−−→w1w2 = α−→w1 + β−→w2 =
∑
i

(αcw1
i + βcw2

i )−→ni

−−−→w1w2 = −→w1 �−→w2 =
∑
i

cw1
i cw2

i
−→ni

An element-wise “mixture” of the input elements:

= =

Vector mixture Tensor-based
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Properties of vector mixture models

Words, phrases and sentences share the same vector space

A bag-of-word approach. Word order does not play a role:

−−→
dog +

−−→
bites +−−→man = −−→man +

−−→
bites +

−−→
dog

Feature-wise, vector addition can be seen as feature union,
and vector multiplication as feature intersection
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Vector mixtures: Intuition

The distributional vector of a word shows the extent to which
this word is related to other words of the vocabulary

For a verb, the components of its vector are related to the
action described by the verb

I.e. the vector for the word ‘run’ shows the extent to which a
‘dog’ can run, a ‘car’ can run, a ‘table’ can run and so on

So, the element-wise composition of
−−→
dog with −→run shows the

extent to which things that are related to dogs can also run
(and vice versa); in other words:

The resulting vector shows how compatible is the verb
with the specific subject.
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Vector mixtures: Pros and Cons

Distinguishing feature:

All words contribute equally to the final result.

PROS:

Trivial to implement

Surprisingly effective in practice

CONS:

A bag-of-word approach

Does not distinguish between the type-logical identities of the
words
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Relational words as functions

In a vector mixture model, an adjective is of the same order as
the noun it modifies, and both contribute equally to the result.

One step further: Relational words are multi-linear maps
(tensors of various orders) that can be applied to one or more
arguments (vectors).

= =

Vector mixture Tensor-based

Formalized in the context of compact closed categories by
Coecke, Sadrzadeh and Clark (2010).
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Quantizing the grammar

Coecke, Sadrzadeh and Clark (2010):

Pregroup grammars are structurally homomorphic with the
category of finite-dimensional vector spaces and linear maps
(both share compact closure)

In abstract terms, there exists a structure-preserving passage
from grammar to meaning:

F : Grammar→ Meaning

The meaning of a sentence w1w2 . . .wn with grammatical
derivation α is defined as:

−−−−−−−→w1w2 . . .wn := F(α)(−→w1 ⊗−→w2 ⊗ . . .⊗−→wn)
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Pregroup grammars

A pregroup grammar P(Σ,B) is a relation that assigns gram-
matical types from a pregroup algebra freely generated over
a set of atomic types B to words of a vocabulary Σ.

A pregroup algebra is a partially ordered monoid, where each
element p has a left and a right adjoint such that:

p · pr ≤ 1 ≤ pr · p pl · p ≤ 1 ≤ p · pl

Elements of the pregroup are basic (atomic) grammatical
types, e.g. B = {n, s}.
Atomic grammatical types can be combined to form types of
higher order (e.g. n · nl or nr · s · nl)
A sentence w1w2 . . .wn (with word wi to be of type ti ) is
grammatical whenever:

t1 · t2 · . . . · tn ≤ s
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Pregroup derivation: example

p · pr ≤ 1 ≤ pr · p pl · p ≤ 1 ≤ p · pl

S

NP

Adj

trembling

N

shadows

VP

V

play

N

hide-and-seek

trembling shadows play hide-and-seek

n nl n nr s nl n

n · nl · n · nr · s · nl · n ≤ n · 1 · nr · s · 1
= n · nr · s
≤ 1 · s
= s
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Compact closed categories

A monoidal category (C,⊗, I ) is compact closed when every
object has a left and a right adjoint, for which the following
morphisms exist:

A⊗ Ar εr−→ I
ηr−→ Ar ⊗ A Al ⊗ A

εl−→ I
ηl−→ A⊗ Al

Pregroup grammars are CCCs, with ε and η maps
corresponding to the partial orders

FdVect, the category of finite-dimensional vector spaces and
linear maps, is a also a (symmetric) CCC:

ε maps correspond to inner product
η maps to identity maps and multiples of those
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A functor from syntax to semantics

We define a strongly monoidal functor F such that:

F : P(Σ,B)→ FdVect

F(p) = P ∀p ∈ B
F(1) = R

F(p · q) = F(p)⊗F(q)

F(pr ) = F(pl) = F(p)

F(p ≤ q) = F(p)→ F(q)

F(εr ) = F(εl) = inner product in FdVect

F(ηr ) = F(ηl) = identity maps in FdVect
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A multi-linear model

The grammatical type of a word defines the vector space
in which the word lives:

Nouns are vectors in N;

adjectives are linear maps N → N, i.e elements in
N ⊗ N;

intransitive verbs are linear maps N → S , i.e. elements
in N ⊗ S ;

transitive verbs are bi-linear maps N ⊗ N → S , i.e.
elements of N ⊗ S ⊗ N;

The composition operation is tensor contraction, i.e.
elimination of matching dimensions by application of inner
product.
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Categorical composition: example

S

NP

Adj

trembling

N

shadows

VP

V

play

N

hide-and-seek

trembling shadows play hide-and-seek

n nl n nr s nl n

Type reduction morphism:

(εrn · 1s) ◦ (1n · εln · 1nr ·s · εln) : n · nl · n · nr · s · nl · n→ s

F
[
(εrn · 1s) ◦ (1n · εln · 1nr ·s · εln)

] (
trembling ⊗

−−−−−→
shadows ⊗ play ⊗

−−−−−−−−−→
hide-and-seek

)
=

(εN ⊗ 1S ) ◦ (1N ⊗ εN ⊗ 1N⊗S ⊗ εN)
(
trembling ⊗

−−−−−→
shadows ⊗ play ⊗

−−−−−−−−−→
hide-and-seek

)
=

trembling ×
−−−−−→
shadows × play ×

−−−−−−−−−→
hide-and-seek

−−−−−→
shadows,

−−−−−−−−−→
hide-and-seek ∈ N trembling ∈ N ⊗ N play ∈ N ⊗ S ⊗ N
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Creating relational tensors: Extensional approach

A relational word is defined as the set of its arguments:

[[red ]] = {car , door , dress, ink, · · · }

Grefenstette and Sadrzadeh (2011):

adj =
∑
i

−−→nouni verbint =
∑
i

−−→
subj i verbtr =

∑
i

−−→
subj i⊗

−→
obj i

Kartsaklis and Sadrzadeh (2016):

adj =
∑
i

−−−→nouni ⊗−−−→nouni verbint =
∑
i

−−→
subji ⊗

−−→
subji

verbtr =
∑
i

−−→
subj i ⊗

(−−→
subj i +

−→
obj i

2

)
⊗
−→
obj i
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Creating relational tensors: Statistical approach

Baroni and Zamparelli (2010):

Create holistic distributional vectors for whole compounds (as
if they were words) and use them to train a linear regression
model.

red

× car = red car

× door = red door

× dress = red dress

× ink = red ink

ˆadj = arg min
adj

[
1

2m

∑
i

(adj ×−−−→nouni −
−−−−−−→
adj nouni )

2

]
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Functional words

Certain classes of words, such as determiners, relative
pronouns, prepositions, or coordinators occur in almost every
possible context.

Thus, they are considered semantically vacuous from a
distributional perspective and most often they are simply
ignored.

In the tensor-based setting, these special words can be mod-
elled by exploiting additional mathematical structures, such
as Frobenius algebras and bialgebras.
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Frobenius algebras in FdVect

Given a symmetric CCC (C,⊗, I ), an object X ∈ C has a
Frobenius structure on it if there exist morphisms:

∆ : X → X ⊗ X , ι : X → I and µ : X ⊗ X → X , ζ : I → X

conforming to the Frobenius condition:

(µ⊗ 1X ) ◦ (1X ⊗∆) = ∆ ◦ µ = (1X ⊗ µ) ◦ (∆⊗ 1X )

In FdVect, any vector space V with a fixed basis {−→vi }i has a
commutative special Frobenius algebra over it [Coecke and

Pavlovic, 2006]:

∆ : −→vi 7→ −→vi ⊗−→vi µ : −→vi ⊗−→vi 7→ −→vi
It can be seen as copying and merging of the basis.
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Frobenius algebras: Relative pronouns

How to represent relative pronouns in a tensor-based setting?

A relative clause modifies the head noun of a phrase:

who the man likes Mary
the man likes Mary

N N r N l N=N N r N S l N N r S N l N

The result is a merging of the vectors of the noun and the
relative clause:

−−→man � (likes ×
−−−→
Mary)

[Sadrzadeh, Clark, Coecke (2013)]
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Frobenius algebras: Coordination

Copying and merging are the key processes in coordination:

and

John sleeps snores

7→N Nr S Nr SSr NNrr Nr S S l

SNrN

John

Nr

S

S

sleeps and snores

Nr

The subject is copied by a ∆-map and interacts individually
with the two verbs

The results are merged together with a µ-map
−−→
JohnT × (sleep � snore)

[Kartsaklis (2016)]
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Tensor-based models: Intuition

Tensor-based composition goes beyond a simple compatibility
check between the two argument vectors; it transforms the
input into an output of possibly different type.

A verb, for example, is a function that takes as input a noun
and transforms it into a sentence:

fint : N → S ftr : N × N → S

Size and form of the sentence space become tunable
parameters of the models, and can depend on the task.

Taking S = {( 0
1 ) , ( 1

0 )}, for example, provides an equivalent
to formal semantics.
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Tensor-based models: Pros and Cons

Distinguishing feature:

Relational words are multi-linear maps acting on arguments

PROS:

Aligned with the formal semantics perspective

More powerful than vector mixtures

Flexible regarding the representation of functional words, such
as relative pronouns and prepositions.

CONS:

Every logical and functional word must be assigned to an
appropriate tensor representation–it’s not always clear how

Space complexity problems for functions of higher arity (e.g. a
ditransitive verb is a tensor of order 4)
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An artificial neuron

The xi s form the input vector

The wji s is a set of weights associated with the i-th output of
the layer

f is a non-linear function such as tanh or sigmoid

ai is the i-th output of the layer, computed as:

ai = f (w1ix1 + w2ix2 + w3ix3)
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A simple neural net

A feed-forward neural network with one hidden layer:

h1 = f (w11x1+w21x2+w31x3+w41x4+w51x5+b1)
h2 = f (w12x1+w22x2+w32x3+w42x4+w52x5+b2)
h3 = f (w13x1+w23x2+w33x3+w43x4+w53x5+b3)

or
−→
h = f (W(1)−→x +

−→
b (1))

Similarly:

−→y = f (W(2)−→h +
−→
b (2))

Note that W(1) ∈ R3×5 and W(2) ∈ R2×3

f is a non-linear function such as tanh or sigmoid
(take f = Id and you have a tensor-based model)

A universal approximator
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Objective functions

The goal of NN training is to find the set of parameters that
optimizes a given objective function

Or, to put it differently, to minimize an error function.

Assume, for example, the goal of the NN is to produce a
vector −→y that matches a specific target vector

−→
t . The

function:

E =
1

2m

∑
i

||−→ti −−→yi ||2

gives the total error across all training instances.

We want to set the weights of the NN such that E becomes
zero or as close to zero as possible.
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Gradient descent

Take steps proportional to the negative of the gradient of E
at the current point.

Θt = Θt−1 − α∇E (Θt−1)

Θt : the parameters of
the model at time
step t

α: a learning rate

(Graph taken from “The Beginner Programmer” blog,
http://firsttimeprogrammer.blogspot.co.uk)
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Backpropagation of errors

How do we compute the error terms at the inner layers?

These are computed based one the errors of the next layer by
using backpropagation. In general:

δk = ΘT
k δk+1 � f ′(zk)

δk is the error vector at layer k

Θk is the weight matrix of layer k

zk is the weighted sum at the output of layer k

f ′ is the derivative of the non-linear function f

Just an application of the chain rule for derivatives.
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Recurrent and recursive NNs

Standard NNs assume that inputs are independent of each
other

That is not the case in language; a word, for example, always
depends on the previous words in the same sentence

In a recurrent NN, connections form a directed cycle so that
each output depends on the previous ones

A recursive NN is applied recursively following a specific
structure.

input

output

Recurrent NN
input

output

Recursive NN

D. Kartsaklis, M. Sadrzadeh Compositional Distributional Models of Meaning 44/63



Recursive neural networks for composition

Pollack (1990); Socher et al. (2011;2012):
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Unsupervised learning with NNs

How can we train a NN in an unsupervised manner?

Train the network to reproduce its input via an expansion
layer:

Use the output of the hidden layer as a compressed version of
the input [Socher et al. (2011)]
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Long Short-Term Memory networks (1/2)

RNNs are effective, but fail to capture long-range
dependencies such as:

The movie I liked and John said Mary and Ann
really hated

“Vanishing gradient” problem: Back-propagating the error
requires the multiplication of many very small numbers
together, and training for the bottom layers starts to stall.

Long Short-Term Memory networks (LSTMs) (Hochreiter and
Schmidhuber, 1997) provide a solution, by equipping each
neuron with an internal state.
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Long Short-Term Memory networks (2/2)

RNN

LSTM

(Diagrams taken from Christopher Olah’s blog, http://colah.github.io/)

D. Kartsaklis, M. Sadrzadeh Compositional Distributional Models of Meaning 48/63



Linguistically aware NNs

NN-based methods come mainly from image processing. How
can we make them more linguistically aware?

Cheng and Kartsaklis (2015):

Take into account
syntax, by optimizing
against a scrambled
version of each sentence

Dynamically
disambiguate the
meaning of words during
training based on their
context

main 
(ambiguous)

vectors

sense vectors

gate

compositional
layer

phrase vector

plausibility layer

compositional layer

sentence vector
plausibility layer
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Convolutional NNs

Originated in pattern recognition [Fukushima, 1980]

Small filters apply on every position of the input vector:

Capable of extracting fine-grained local features independently
of the exact position in input

Features become increasingly global as more layers are stacked

Each convolutional layer is usually followed by a pooling layer

Top layer is fully connected, usually a soft-max classifier

Application to language: Collobert and Weston (2008)
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DCNNs for modelling sentences

Kalchbrenner, Grefenstette
and Blunsom (2014): A deep

architecture using dynamic
k-max pooling

Syntactic structure is
induced automatically:

(Figures reused with permission)
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Beyond sentence level

An additional convolutional layer can provide document vectors
[Denil et al. (2014)]:

(Figure reused with permission)
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Neural models: Intuition (1/2)

Recall that tensor-based composition involves a linear
transformation of the input into some output.

Neural models make this process more effective by applying
consecutive non-linear layers of transformation.

A NN does not only project a noun vector onto a sentence
space, but it can also transform the geometry of the space
itself in order to make it reflect better the relationships be-
tween the points (sentences) in it.
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Neural models: Intuition (2/2)

Example: Although there is no linear map to send an input
x ∈ {0, 1} to the correct XOR value, the function can be
approximated by a simple NN with one hidden layer.

Points in (b) can be seen as representing two semantically
distinct groups of sentences, which the NN is able to
distinguish (while a linear map cannot)
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Neural models: Pros and Cons

Distinguishing feature:

Drastic transformation of the sentence space.

PROS:

Non-linearity and layered approach allow the simulation of a
very wide range of functions

Word vectors are parameters of the model, optimized during
training

State-of-the-art results in a number of NLP tasks

CONS:

Requires expensive training based on backpropagation

Difficult to discover the right configuration

A “black-box” approach: not easy to correlate inner workings
with output
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Refresher: A CDMs hierarchy
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Open issues-Future work

No convincing solution for logical connectives, negation,
quantifiers and so on.

Functional words, such as prepositions and relative pronouns,
are also a problem.

Sentence space is usually identified with word space. This is
convenient, but is it the right thing to do?

Solutions depend on the specific CDM class—e.g. not much
to do in a vector mixture setting

Important: How can we make NNs more linguistically aware?
[Cheng and Kartsaklis (2015)]
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Summary

CDMs provide quantitative semantic representations for
sentences (or even documents)

Element-wise operations on word vectors constitute an easy
and reasonably effective way to get sentence vectors

Categorical compositional distributional models allow
reasoning on a theoretical level—a glass box approach

Neural models are extremely powerful and effective; still a
black-box approach, not easy to explain why a specific
configuration works and some other does not.

Convolutional networks seem to constitute the most promising
solution to the problem of capturing the meaning of sentences
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Thank you for your attention!
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