Holographic Reduced Representations

CS 135 - Brandeis University Fall 2024 James Pustejovsky

November 22, 2024

イロト イポト イヨト イヨト

Static and Contextualized Vector Composition

Holographic Reduced Representations (HRR)

Modeling GL Semantics with HRRs

Introduction

We explore three methods to represent sentences as vectors:

- Conventional vector composition
- Transformer-based contextualized embeddings
- Holographic Reduced Representations (HRRs)

We explore some semantic problems:

- Nouns as Vectors / Adjectives as Matrices
- Generative Lexicon encoded as Vector Binding
- Type Coercion in Vector Semantics

< ロ > < 同 > < 三 > < 三 >

What Are One-Hot Vectors?

- A one-hot vector is a binary vector used to represent categorical data.
- For a vocabulary of size V, each word is assigned a unique index i where:

$$\mathbf{v}_i = [0, 0, \dots, 1, \dots, 0]$$

イロト イポト イヨト イヨト

Example:

Vocabulary: ["cat", "dog", "fish"]
 "cat" → [1,0,0], "dog" → [0,1,0], "fish" → [0,0,1]

Limitations of One-Hot Vectors

High Dimensionality:

Dimension of vector = V

For large vocabularies (V > 100,000), the vectors become inefficient.

- Lack of Semantic Information:
 - No similarity between "cat" and "dog".
 - All vectors are orthogonal.
- Solution: Use Word2Vec to map one-hot vectors into dense, low-dimensional embeddings.

From One-Hot Vectors to Word Embeddings (Word2Vec)

Word2Vec learns dense vector representations for words by analyzing their context in a corpus.

- Input: One-hot vector for each word.
- Output: Dense, low-dimensional embedding ($\mathbf{w} \in \mathbb{R}^d$).

Key Idea: Distributional Hypothesis

Words that appear in similar contexts have similar meanings. Two training methods:

- Skip-gram: Predict context words from a target word.
- CBOW (Continuous Bag of Words): Predict a target word from context words.

イロト イポト イヨト イヨト

Example: Word2Vec Conversion

- Vocabulary: ["cat", "dog", "fish"]
- One-hot vectors:

 $"\mathsf{cat}" = [1,0,0], \quad "\mathsf{dog}" = [0,1,0], \quad "\mathsf{fish}" = [0,0,1]$

Dense embeddings (Word2Vec output):

" cat" = [0.5, 0.1, 0.3], "dog" = [0.4, 0.2, 0.5], "fish" = [0.3, 0.8, 0.2]

イロト 不得 トイラト イラト 一日

These embeddings capture semantic similarity:

Similarity("cat", "dog") > Similarity("cat", "fish")

What is Skip-gram?

- Word2Vec learns dense vector representations for words by predicting their context in a corpus.
- Skip-gram Model:
 - Predicts context words (w_c) given a target word (w_t) .
 - Objective: Maximize the probability of context words given the target word:

 $P(w_c|w_t)$

- Embedding Space:
 - ► Each word is mapped to a dense vector (d ~ 100 300).
 - Vectors capture semantic similarity (e.g., "king" and "queen").

イロト イヨト イヨト イヨト

Details of the Skip-gram Model

Objective Function

For a given corpus, the Skip-gram model maximizes the conditional probability:

$$\prod_{t=1}^{T} \prod_{-c \leq j \leq c, j \neq 0} P(w_{t+j}|w_t)$$

イロト イヨト イヨト イヨト

where:

▶ *w_t*: Target word.

• w_{t+i} : Context words within a window of size c.

Details of the Skip-gram Model

Log-Likelihood

Taking the logarithm, the objective becomes:

$$\mathcal{L} = \sum_{t=1}^{T} \sum_{-c \leq j \leq c, j \neq 0} \log P(w_{t+j}|w_t)$$

Conditional Probability

The probability $P(w_{t+j}|w_t)$ is modeled using softmax:

$$P(w_{t+j}|w_t) = \frac{\exp(\mathbf{u}_{w_{t+j}}^{\top}\mathbf{v}_{w_t})}{\sum_{w \in V} \exp(\mathbf{u}_w^{\top}\mathbf{v}_{w_t})}$$

イロト イヨト イヨト イヨト

v_{wt}: Embedding for the target word.

u_{wt+i}: Embedding for the context word.

Skip-gram Training Steps

- 1. Initialize two embedding matrices:
 - W (target embeddings): $|V| \times d$
 - W' (context embeddings): $|V| \times d$
- 2. For each target word w_t :
 - Predict each context word w_c in the window [-c, c].
- 3. Compute the loss (negative log-likelihood):

$$\mathcal{L} = -\log P(w_c|w_t)$$

< ロ > < 同 > < 三 > < 三 >

4. Update W and W' using stochastic gradient descent (SGD).

Computing Gradients for Skip-gram

For a single pair (w_t, w_c) , the loss is:

 $\mathcal{L} = -\log P(w_c|w_t)$

Gradient for Target Embedding (\mathbf{v}_{w_t})

$$\frac{\partial \mathcal{L}}{\partial \mathbf{v}_{w_t}} = \mathbf{u}_{w_c} - \sum_{w \in V} P(w|w_t) \mathbf{u}_w$$

Gradient for Context Embedding (\mathbf{u}_{w_c})

$$\frac{\partial \mathcal{L}}{\partial \mathbf{u}_{w_c}} = \mathbf{v}_{w_t} - \sum_{w \in V} P(w|w_t) \mathbf{v}_{w_t}$$

The gradients are used to update the embeddings via SGD.

Negative Sampling: Reducing Computation

- Problem: Softmax requires summing over all words in the vocabulary (|V|).
- Solution: Use Negative Sampling to approximate softmax.

$$\log P(w_c|w_t) \approx \log \sigma(\mathbf{u}_{w_c}^{\top} \mathbf{v}_{w_t}) + \sum_{i=1}^{k} \mathbb{E}_{w \sim P_n(w)} \left[\log \sigma(-\mathbf{u}_{w}^{\top} \mathbf{v}_{w_t}) \right]$$

- $P_n(w)$: Noise distribution for negative samples.
- ▶ k: Number of negative samples per positive pair.

Advantages

- Reduces computation from O(|V|) to O(k).
- Focuses on distinguishing the target-context pairs from random noise.

Worked Example: Skip-gram Training Step

Consider a toy vocabulary: $V = {cat, dog, fish}$.

- Target word: $w_t = \text{cat.}$
- Context words: $w_c \in \{ \text{dog}, \text{fish} \}$.
- Embedding dimension: d = 2.
- Initialize embeddings:

$$\label{eq:v_cat} \textbf{v}_{cat} = [0.1, 0.3], \quad \textbf{u}_{dog} = [0.2, 0.4], \quad \textbf{u}_{fish} = [0.3, 0.1]$$

, T

Compute $P(w_c|w_t)$ for $w_c = \text{dog}$:

$$P(w_c|w_t) = \frac{\exp(\mathbf{u}_{dog}^{\mathsf{v}}\mathbf{v}_{cat})}{\sum_{w \in V} \exp(\mathbf{u}_w^{\mathsf{T}}\mathbf{v}_{cat})}$$

Numerator:

$$\mathbf{J}_{dog}^{\top} \mathbf{v}_{cat} = (0.2)(0.1) + (0.4)(0.3) = 0.14$$

Denominator:

$$\mathsf{Sum} = \exp(0.14) + \exp(0.11) + \exp(0.03)$$

Result:

$$P(\text{dog}|\text{cat}) = \frac{\exp(0.14)}{\exp(0.14) + \exp(0.11) + \exp(0.03)} = \dots$$

Final Word Embeddings

- After training, each word has two embeddings:
 - \blacktriangleright **v**_{w_t}: Represents the word as a target.
 - \mathbf{u}_{w_c} : Represents the word as a context.
- Combine these embeddings (e.g., by averaging) to create the final word vector:

$$\mathbf{w} = \frac{\mathbf{v}_{w_t} + \mathbf{u}_{w_c}}{2}$$

A (10) × (10) × (10) ×

These embeddings capture semantic similarity and are used in downstream tasks.

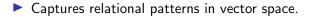
Using Word2Vec for Analogical Reasoning

 Analogical reasoning involves finding relationships between pairs of words or concepts.

"king is to queen as man is to woman."

Represented mathematically as:

king – man \approx queen – woman.



Latent Semantic Analysis (LSA)

- LSA uses singular value decomposition (SVD) to reduce the dimensionality of term-document matrices.
- Represents words and documents as vectors in a semantic space:

$$\mathbf{M} \in \mathbb{R}^{|V| \times |D|} \quad \rightarrow \quad \mathbf{M}_{\mathsf{reduced}} \in \mathbb{R}^{|V| \times k}$$

Captures semantic relationships:

cosine similarity between word vectors reflects semantic similarity.

< ロ > < 同 > < 回 > < 回 >

Limitations

- LSA focuses on co-occurrence, not relational patterns.
- Cannot explicitly represent analogies.

The Parallelogram Hypothesis

- Hypothesis: Analogical reasoning can be represented as geometric relationships in vector space.
- Example:

```
king – man + woman \approx queen.
```

- Geometric Interpretation:
 - The vector from man to king is parallel to the vector from woman to queen.

 Visualized as a parallelogram: Given three points, solve for the fourth:

queen = king - man + woman.

How Word2Vec Derives Analogies

- Word2Vec learns dense word embeddings that capture semantic and syntactic relationships.
- Relationships are encoded in the directions between vectors.
- Analogy-solving formula:

$$\mathbf{w}_4 = \arg \max_{\mathbf{w} \in V} \cos \left(\mathbf{w}, \mathbf{w}_2 - \mathbf{w}_1 + \mathbf{w}_3 \right),$$

・ロ・ ・ 回 ・ ・ ヨ ・ ・ ヨ ・ ・

where:

w₁ = man, w₂ = king, w₃ = woman,
 w₄ = queen.

Worked Example: Word2Vec Analogy

Example: Solve "king is to queen as man is to woman":

Vectors:

king = [0.8, 0.6], queen = [0.9, 0.7],

$$man = [0.2, 0.4], woman = [0.3, 0.5].$$

Compute:

Result:

queen = king
$$-$$
 man $+$ woman.
queen = $[0.8, 0.6] - [0.2, 0.4] + [0.3, 0.5].$

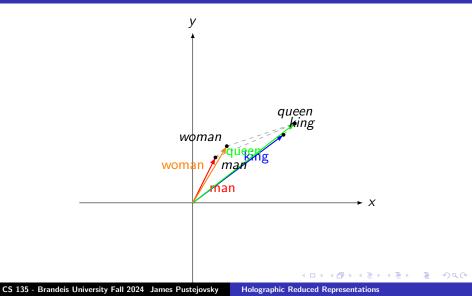
queen =
$$[0.9, 0.7]$$
.

イロト イヨト イヨト イヨト

Static and Contextualized Vector Composition

Holographic Reduced Representations (HRR) Modeling GL Semantics with HRRs

Vector Analogy with Parallelogram Visualization



Why Does Word2Vec Work?

- Co-occurrence Modeling:
 - Word2Vec captures context relationships via training on skip-grams.
- Semantic Directionality:
 - Embeddings encode directional relationships (e.g., gender, tense).
- Vector Arithmetic:
 - The geometry of word embeddings allows analogical reasoning through addition and subtraction.

< ロ > < 同 > < 三 > < 三 >

What Word2Vec Does Not Explain

- Syntax-Semantics Interface:
 - Analogies focus on semantics; no explicit representation of syntactic structure.
- Complex Analogies:
 - Cannot handle multi-step or hierarchical relationships.
- Context Dependence:
 - Word2Vec embeddings are static, ignoring polysemy and contextual nuances.
- Empirical Limitations:
 - Only works well for analogies seen in training or closely related domains.

< ロ > < 同 > < 三 > < 三 >

Key Takeaways

- Analogical reasoning is a fundamental capability of word embeddings like Word2Vec.
- The parallelogram hypothesis explains how analogies are geometrically encoded in vector space.
- Limitations:
 - Word2Vec does not capture syntax or hierarchical relationships.

- Contextualized embeddings (e.g., BERT) address some limitations but are less interpretable.
- Analogical reasoning with vectors demonstrates the power and constraints of distributional semantics.

Transformer-Based Contextualized Embeddings

Overview of Self-Attention in Transformers

- Self-attention computes relationships between tokens in a sentence.
- Outputs contextualized representations for each token.

Self-Attention Formula

For query (Q), key (K), and value (V) matrices:

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

- ▶ $Q, K, V \in \mathbb{R}^{n \times d_k}$, where *n* is the number of tokens and *d_k* is the embedding size.
- Each token generates its own query, key, and value vectors.

Step 1: Input to Embeddings

Given a sentence:

"The bank will not approve the loan."

► Tokens: [The, bank, will, not, approve, the, loan].

• Embedding dimension: $d_k = 4$ (for simplicity).

Token embeddings (random initialization for this example):

$$\textbf{x}_1 = [1,0,1,0], \, \textbf{x}_2 = [0,1,0,1], \dots$$

イロト イヨト イヨト イヨト

Step 2: Compute Query, Key, and Value Matrices

Each token embedding is projected into query, key, and value spaces using learned weight matrices:

$$Q = XW_Q, \quad K = XW_K, \quad V = XW_V$$

Example weights $(W_Q, W_K, W_V \in \mathbb{R}^{d_k \times d_k})$:

$$W_Q = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \ W_K = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}, \ \dots$$

For token 1 $(x_1 = [1, 0, 1, 0])$:

$$Q_1 = \mathbf{x}_1 W_Q = \begin{bmatrix} 1, 0, 1, 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2, 0, 1, 0 \end{bmatrix}$$

Step 3: Compute Attention Scores

Compute scaled dot-product attention:

$$\mathsf{Attention}(Q,K,V) = \mathsf{softmax}\left(\frac{QK^{\mathsf{T}}}{\sqrt{d_k}}\right)V$$

For Q_1 and K_2 :

$$Q_1 \cdot K_2 = [2, 0, 1, 0] \cdot [0, 1, 0, 1] = 0$$

Attention scores matrix:

$$Scores_{i,j} = \frac{Q_i \cdot K_j}{\sqrt{d_k}}, \quad i,j \in \{1,\ldots,n\}$$

Normalize scores using softmax:

$$\mathsf{softmax}(z_i) = rac{\mathsf{exp}(z_i)}{\sum_j \mathsf{exp}(z_j)}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Step 4: Compute Weighted Values

For token 1:

Attention
$$(Q_1, K, V) = \operatorname{softmax}\left(\frac{Q_1K^T}{\sqrt{d_k}}\right)V$$

Example:

$$Scores_{1,} = softmax\left(\frac{[0,1,2]}{\sqrt{4}}\right) = [0.04, 0.11, 0.85]$$

Use scores to compute weighted sum:

$$\mathbf{z}_1 = \sum_{j=1}^n \operatorname{Scores}_{1,j} \cdot V_j$$

Worked Example: Final Contextualized Embeddings

For each token *i*, compute:

$$\mathbf{z}_i = \sum_{j=1}^n \operatorname{Attention}(Q_i, K_j, V_j)$$

Result:

$$Z = \begin{bmatrix} \mathbf{z}_1 \\ \mathbf{z}_2 \\ \vdots \\ \mathbf{z}_n \end{bmatrix}, \quad Z \in \mathbb{R}^{n \times d_k}$$

Aggregated sentence embedding:

$$\mathbf{S}_{\mathsf{Transformer}} = \mathsf{Mean}(Z)$$

or use special token [CLS].

CS 135 - Brandeis University Fall 2024 James Pustejovsky

(4月) トイヨト イヨト

Motivation for Hypervectors and Hyperdimensional Computing

- ▶ Hypervectors: High-dimensional vectors ($d \gg 1000$) used to represent information in a distributed manner.
- Inspired by the properties of the brain:
 - Robustness to noise.
 - Ability to store and retrieve large amounts of information.

Key idea:

Complex structures can be represented as combinations of simple high-dimensional vectors.

イロト イポト イヨト イヨト

What is a Hyperdimensional Vector Space?

- A hyperdimensional vector space is a high-dimensional space (d ≫ 1000) used to represent information.
- Hypervectors ($\mathbf{v} \in \mathbb{R}^d$):
 - Randomly initialized.
 - High dimensionality ensures approximate orthogonality between vectors.

Properties of High-Dimensional Spaces

Orthogonality:

For random vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^d$: $\mathbf{v} \cdot \mathbf{w} \approx 0$ (if $\mathbf{v} \neq \mathbf{w}$).

Stability:

$$\|\mathbf{v}_1 + \mathbf{v}_2 + \cdots + \mathbf{v}_n\|$$
 grows with n .

Capacity:

Large spaces can encode exponentially many distinct patterns.

(本部) (문) (문) (문

How do Hyperdimensional Spaces Encode Patterns"

Key Property: In a hyperdimensional space ℝ^d with d ≫ 1000:

Number of distinct patterns is exponential in d.

- Intuition:
 - A random hypervector $\mathbf{v} \in \mathbb{R}^d$ has d components.
 - ► Each component can take on many possible values (e.g., [-1,1] for bipolar vectors or ℝ for real-valued vectors).
- Mathematical Argument:
 - ▶ Consider *d*-dimensional binary vectors {0,1}^{*d*}:

Total number of distinct vectors: 2^d .

For real-valued or bipolar vectors, the number of distinct patterns grows even faster.

Geometric Perspective: Orthogonality in High Dimensions

High-dimensional spaces have the property that random vectors are nearly orthogonal:

 $\textbf{v}_1 \cdot \textbf{v}_2 \approx 0, \quad \text{if } \textbf{v}_1, \textbf{v}_2 \text{ are random}.$

Implication:

- You can generate exponentially many random hypervectors that are distinguishable (linearly independent or approximately orthogonal).
- Example:
 - ▶ In $\mathbb{R}^{10,000}$, billions of random vectors will have dot products close to zero.

Superposition and Binding in Hyperdimensional Spaces

Superposition (addition):

$$\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2 + \cdots + \mathbf{v}_n.$$

- ► Even with n ≫ 1, the resulting vector is still distinguishable due to high dimensionality.
- Binding (e.g., circular convolution):

$$\mathbf{c} = \mathbf{a} \circledast \mathbf{b}.$$

- Each binding operation produces a new, distinguishable pattern.
- Exponentially Growing Combinations:
 - *n* hypervectors can generate:
 - 2^n combinations via binding and superposition.

イロト イヨト イヨト

Worked Example: Exponential Growth of Patterns

Consider d = 10,000 and binary vectors $\{0,1\}^d$:

Total possible distinct vectors:

2^{10,000} (an astronomically large number).

Now allow for superposition and binding:

- Superposition combines *n* vectors into a unique vector.
- Binding generates entirely new patterns:

 $\mathbf{a} \circledast \mathbf{b}$ is unique for any \mathbf{a}, \mathbf{b} .

イロト イヨト イヨト イヨト

Result:

With high-dimensional vectors, you can encode exponentially many relationships.

Key Benefits of Exponentially Large Spaces

Robustness:

- Small errors (noise) in the components of hypervectors do not significantly affect overall distinguishability.
- Scalability:
 - Exponentially large capacity ensures scalability for encoding large vocabularies, complex patterns, and relationships.

Expressiveness:

- Binding and superposition operations allow for compositional representations (e.g., hierarchical structures or analogies).
- Similarity Preservation:
 - High-dimensional vectors can preserve similarity in the space (e.g., similar words have closer embeddings).

Comparison: One-Hot Vectors vs. Hypervectors

Dimensionality:

- One-hot: |V| (grows with vocabulary size).
- Hypervectors: d (fixed, large dimensionality, e.g., d = 10,000).
- Orthogonality:

One-hot:

$$\mathbf{v}_i \cdot \mathbf{v}_j = 0$$
 for $i \neq j$.

Hypervectors:

 $\mathbf{v}_i \cdot \mathbf{v}_j \approx 0$ (approximate for random vectors).

イロト イポト イヨト イヨト

Representation Power:

One-hot: Only encodes identity.

Hypervectors: Encodes identity, similarity, and relationships.

Computational Distinctions

- Storage Requirements:
 - One-hot: Requires a vector of size |V| for each token.
 - Hypervectors: Fixed size d, independent of vocabulary size.
- Operations:
 - One-hot: No meaningful operations (e.g., addition, multiplication).
 - Hypervectors: Supports binding, superposition, and correlation.

$$\mathbf{a} \circledast \mathbf{b}, \quad \mathbf{a} + \mathbf{b}, \quad \mathbf{a} \circledast \mathbf{b}^{-1}.$$

< ロ > < 同 > < 三 > < 三 >

Scalability:

- One-hot: Becomes infeasible for large vocabularies (|V| ≫ 10⁶).
- Hypervectors: Efficient for large vocabularies due to fixed dimensionality.

Advantages of Hypervector Encodings

Compositionality:

Represent relationships through binding:

relation = $a \circledast b$.

Combine multiple pieces of information:

 $context = v_1 + v_2 + v_3.$

Noise Tolerance:

Small changes to components do not disrupt overall encoding.

- Similarity Preservation:
 - Similar inputs produce similar hypervectors, enabling clustering and matching.
- Scalability:
 - Fixed-dimensional encoding handles large vocabularies and complex structures.

Comparison: One-Hot Vectors vs. Hypervectors

Feature	One-Hot Vectors	Hypervectors
Dimensionality	V (vocab size)	Fixed <i>d</i> (e.g., 10,000)
Orthogonality	Exact	Approximate
Representation	Identity only	Identity $+$ relationships
Operations	None	Binding, superposition, correlation
Storage	Large for large $ V $	Fixed-size
Scalability	Limited	High

イロト イヨト イヨト イヨト

Why Orthonormality is Important

In high-dimensional spaces, random hypervectors are approximately orthonormal:

$$\mathbf{v} \cdot \mathbf{w} pprox \mathbf{0}, \quad \|\mathbf{v}\| = \|\mathbf{w}\| = 1.$$

 Key Implication: Vectors do not interfere with each other in superposition or binding.

 Superposition: Combines multiple vectors while keeping them distinguishable.

$$\mathbf{s} = \mathbf{v}_1 + \mathbf{v}_2 + \cdots + \mathbf{v}_n$$

 Binding: Combines vectors into unique encodings using circular convolution.

$$\mathbf{b}=\mathbf{v}_1 \circledast \mathbf{v}_2$$

< ロ > < 同 > < 三 > < 三 >

Circular Convolution: Binding Vectors

Circular convolution is defined as:

$$(\mathbf{a} \circledast \mathbf{b})_i = \sum_{j=0}^{d-1} a_j \cdot b_{(i-j) \mod d}.$$

Properties of Circular Convolution

$$\mathsf{a} \circledast \mathsf{b} \in \mathbb{R}^d$$

- Uniqueness: Produces a distinct vector for each pair of inputs.
- Approximate Inverse:

$$\mathbf{a} \circledast \mathbf{b} \circledast \mathbf{b}^{-1} \approx \mathbf{a}$$

A (10) × (10) × (10) ×

Correlation: Unbinding Vectors

Circular correlation retrieves one vector from a bound pair:

$$(\mathbf{a} \circledast \mathbf{b}) \circledast \mathbf{b}^{-1} \approx \mathbf{a}.$$

Definition of Circular Correlation

Circular correlation is defined as:

$$(\mathbf{c} \circledast \mathbf{b}^{-1})_i = \sum_{j=0}^{d-1} c_j \cdot b_{(j-i) \mod d}.$$

Key Insights

- Uses the approximate orthonormality of random vectors.
- Recovers the original vector when the bound pair is unbound.

Approximate Orthogonality in High Dimensions

For two random hypervectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^d$:

$$\mathbf{v}\cdot\mathbf{w}=\sum_{i=1}^d v_iw_i.$$

If \mathbf{v}_i and \mathbf{w}_i are independent and zero-mean:

Expected value:

$$\mathbb{E}[\mathbf{v}\cdot\mathbf{w}]=0.$$

Variance decreases with dimensionality:

$$\mathsf{Var}[\mathbf{v}\cdot\mathbf{w}]=O\left(rac{1}{d}
ight).$$

イロト イポト イヨト イヨト

For large d, the dot product is negligibly small:

 $\mathbf{v} \cdot \mathbf{w} \approx 0.$

Implications for Encoding in NLP

 Superposition: Adding hypervectors preserves distinguishability:

$$\mathbf{s} = \mathbf{v}_1 + \mathbf{v}_2 \quad \Rightarrow \quad \mathbf{s} \cdot \mathbf{v}_1 \gg \mathbf{0}.$$

Binding: Convolution produces unique encodings:

$$\mathbf{b}=\mathbf{v}_1 \circledast \mathbf{v}_2.$$

Since $\textbf{v}_1\cdot \textbf{v}_2\approx 0,$ the result is not confounded by interference.

Unbinding: Correlation retrieves components reliably:

$$(\mathbf{b} \circledast \mathbf{v}_2^{-1}) \approx \mathbf{v}_1.$$

< ロ > < 同 > < 三 > < 三 >

Example: Semantic Role Binding

Represent the sentence "The dog chased the ball":

- ► Words: **dog**, **chased**, **ball**.
- Roles: subject, verb, object.

Encoding:

$$S = (dog \circledast subject) + (chased \circledast verb) + (ball \circledast object).$$

Retrieval:

Retrieve the subject:

$$\operatorname{dog} \approx \mathbf{S} \circledast \operatorname{subject}^{-1}$$
.

A (10) × (10) × (10) ×

Example: Sequential Encoding

Encode "The dog sleeps":

- ► Words: the, dog, sleeps.
- Positional encoding:

sequence = the +
$$Perm(dog) + Perm^{2}(sleeps)$$
.

Retrieval:

Retrieve "dog" by reversing the permutation:

 $\log \approx$ sequence \circledast Perm⁻¹.

イロト イヨト イヨト イヨト

Vector Algebraic Composition Operations

Three primary operations are used in hyperdimensional computing:

Superposition (Addition):

$$\mathbf{c} = \mathbf{a} + \mathbf{b}$$

Combines vectors while preserving their individual contributions.

Binding (Multiplication or Convolution):

 $\mathbf{c} = \mathbf{a} \circledast \mathbf{b}$

Creates a unique composite vector that is distinct from the inputs.

Permutation:

Random reordering of vector components to represent positional information.

Convolution as Binding

Circular Convolution

The binding operation in HRRs is defined as circular convolution:

$$c_i = \sum_{j=0}^{d-1} a_j \cdot b_{(i-j) \mod d}$$

Here:

•
$$\mathbf{a} = [a_0, a_1, \dots, a_{d-1}]$$

b =
$$[b_0, b_1, \dots, b_{d-1}]$$

- Properties:
 - Produces a vector of the same dimension d.
 - Distributes information of a and b across c.
 - Approximately invertible.

Worked Example: Circular Convolution

Given:

$$\mathbf{a} = [1, 2, 3], \quad \mathbf{b} = [0, 1, 0]$$

Compute:

$$c_0 = a_0 \cdot b_0 + a_1 \cdot b_2 + a_2 \cdot b_1 = 1 \cdot 0 + 2 \cdot 0 + 3 \cdot 1 = 3$$

$$c_1 = a_0 \cdot b_1 + a_1 \cdot b_0 + a_2 \cdot b_2 = 1 \cdot 1 + 2 \cdot 0 + 3 \cdot 0 = 1$$

$$c_2 = a_0 \cdot b_2 + a_1 \cdot b_1 + a_2 \cdot b_0 = 1 \cdot 0 + 2 \cdot 1 + 3 \cdot 0 = 2$$
Result:

$$c = [3, 1, 2]$$

イロト イヨト イヨト イヨト

臣

Deconvolution as Unbinding

Deconvolution

To retrieve **a** from **c** and **b**, perform circular correlation:

$$a_i = \sum_{j=0}^{d-1} c_j \cdot b_{(i-j) \mod d}$$

Inverse Property:

$$\mathbf{a}\approx\mathbf{c}\circledast\mathbf{b}^{-1}$$

< ロ > < 同 > < 三 > < 三 >

Enables retrieval of the original components bound together.

Summary of HRR Operations

Binding (Encoding):

$$\mathbf{binding} = \mathbf{w}_{\mathsf{word}} \circledast \mathbf{r}_{\mathsf{role}}$$

Superposition:

$$\mathbf{S}_{\mathsf{HRR}} = \mathbf{S} + \mathbf{V} + \mathbf{Neg} + \mathbf{O}$$

Unbinding (Decoding):

$$\mathsf{w}_{\mathsf{word}} pprox \mathbf{S}_{\mathsf{HRR}} \circledast \mathsf{r}_{\mathsf{role}}^{-1}$$

(1) マント (1) マント (1) マント

HRRs provide a robust framework for representing and manipulating structured information in high-dimensional spaces.

Comparison of Methods

A comparison of the three methods:

Feature	Transformer	Conventional	HRR
Context-Sensitivity	High	None	Moderate
Syntactic Structure	Implicit	Ignored	Explicit
Polysemy Handling	Excellent	Poor	Limited
Invertibility	No	No	Yes

イロト イヨト イヨト イヨト

臣

Overview of Baroni & Zamparelli's Theory

Nouns: Represented as dense vectors.

$$\mathbf{n} \in \mathbb{R}^d$$

Adjectives: Represented as linear transformations (matrices).

$$\mathbf{A} \in \mathbb{R}^{d imes d}$$

 Modification: Apply the adjective to the noun using matrix-vector multiplication.

Modified noun: $\mathbf{n}' = \mathbf{A} \cdot \mathbf{n}$

< ロ > < 同 > < 三 > < 三 >

Worked Example: Baroni & Zamparelli's Theory

Let:

• Noun:
$$\mathbf{n} = [1, 0, 1]^{T}$$

• Adjective: $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Compute:

$$\mathbf{n}' = \mathbf{A} \cdot \mathbf{n} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Interpretation:

- Adjective transforms the noun's semantic space.
- Matrix captures how adjectives modify meaning (e.g., "red" or "big").

Strengths and Limitations of Baroni & Zamparelli's Theory

Strengths:

Captures compositional semantics via linear transformations.

Allows for a systematic representation of adjective effects.

Limitations:

- High parameter cost (d^2 parameters per adjective).
- Limited interpretability of learned matrices.
- Ignores distributed binding (no explicit roles or structure).

(4回) (4回) (4回)

Overview of HRR Approach

► Nouns: Represented as high-dimensional hypervectors.

$$\mathbf{n} \in \mathbb{R}^d, \quad d \gg 1000$$

Adjectives: Represented as hypervectors.

$$\mathbf{a} \in \mathbb{R}^d$$

Binding: Adjectives bind to nouns using circular convolution.

$$\mathbf{n}' = \mathbf{a} \circledast \mathbf{n}$$

Superposition: Combine multiple adjective-noun pairs.

$$\bm{S} = \bm{n}_1' + \bm{n}_2' + \cdots$$

Worked Example: HRR Approach

Let:

- Noun hypervector: $\mathbf{n} = [1, 0, 1]$
- Adjective hypervector: $\mathbf{a} = [0, 1, 0]$

Compute binding via circular convolution:

$$c_0 = a_0 \cdot n_0 + a_1 \cdot n_2 + a_2 \cdot n_1 = 0 \cdot 1 + 1 \cdot 1 + 0 \cdot 0 = 1$$

$$c_1 = a_0 \cdot n_1 + a_1 \cdot n_0 + a_2 \cdot n_2 = 0 \cdot 0 + 1 \cdot 1 + 0 \cdot 1 = 1$$

$$c_2 = a_0 \cdot n_2 + a_1 \cdot n_1 + a_2 \cdot n_0 = 0 \cdot 1 + 1 \cdot 0 + 0 \cdot 1 = 0$$

Resulting vector:

$$\boldsymbol{n}' = [1,1,0]$$

(4月) トイヨト イヨト

Comparison: Baroni & Zamparelli vs. HRR

Feature	Baroni & Zamparelli	HRR
Representation of Adjectives	Matrices $(d \times d)$	Hypervectors (d)
Composition Operation	Matrix-Vector Multiplication	Circular Convolution
Dimensionality	$O(d^2)$ (scaling issue)	Fixed (d)
Interpretability	Low	Moderate
Flexibility (e.g., roles)	Limited	High (binding and superposition)

イロト イヨト イヨト イヨト

臣

The Role of Telic in Generative Lexicon

The Telic role in GL Theory captures the purpose or function of an entity.

Telic(pen) = write-with, Telic(car) = drive

- Adjectives modify nouns by binding to specific Qualia roles, including the Telic role.
- Disambiguation occurs when an adjective aligns with the Telic role of the noun.

Examples of Telic-Driven Disambiguation

- ▶ "Fast car" \rightarrow Telic: drive (interpreted as speed when driving).
- "Good pen" \rightarrow Telic: write-with (interpreted as quality in writing).
- ► "Loud speaker" → Telic: produce-sound (interpreted as volume of sound production).

Selective Binding with Telic Role

Adjective-noun composition involves selective binding:

```
Adjective 

    Telic(Noun)
```

- This highlights the Telic role of the noun as the locus of modification.
- Formalization:

 $\mathbf{a} \circledast \mathbf{r}_{\mathsf{Telic}} \circledast \mathbf{n}$

Interpretation of Adjective Modification

The adjective binds to the Telic role, influencing how the noun is interpreted in context.

"Fast car" = fast
$$\circledast$$
 drive(car)

イロト イポト イヨト イヨト

HRR Representation of Telic Role

- Nouns: Represented as hypervectors (n).
- Adjectives: Represented as hypervectors (a).
- ► Telic Role: Represented as a hypervector (**r**_{Telic}).
- Binding: Use circular convolution to encode adjective modification of the Telic role.

 $\textbf{composition} = a \circledast r_{\textsf{Telic}} \circledast n$

< ロ > < 同 > < 三 > < 三 >

 Superposition: Combine multiple adjective-noun pairs for broader contexts.

Worked Example: "Fast Car"

Given:

• Noun: "car"
$$(\mathbf{n} = [1, 0, 1])$$
.

• Telic Role: "drive" (
$$\mathbf{r}_{\text{Telic}} = [1, 1, 0]$$
).

Compute:

$$binding = a \circledast r_{Telic} \circledast n$$

Step 1 (Adjective-Telic binding):

$$c_0 = a_0 r_0 + a_1 r_2 + a_2 r_1 = 0 \cdot 1 + 1 \cdot 0 + 0 \cdot 1 = 0$$

Step 2 (Adjective-Telic-Noun binding):

$$c_0' = c_0 n_0 + c_1 n_2 + c_2 n_1 = \dots$$

Result:

$\textbf{binding} = \dots$

The final vector encodes "fast car" in terms of its Telic role, =>> = ∽ << CS 135 - Brandeis University Fall 2024 James Pustejovsky Holographic Reduced Representations

Worked Example: "Good Pen"

Given:

- ► Adjective: "good" (**a** = [1,0,1]).
- Telic Role: "write-with" ($\mathbf{r}_{\text{Telic}} = [0, 1, 1]$).

Compute:

$$binding = a \circledast r_{\mathsf{Telic}} \circledast n$$

Result:

binding $= \dots$

イロト イポト イヨト イヨト

This vector captures the modification of "pen" by "good" with respect to the Telic role, emphasizing its quality in writing.

What is Type Coercion?

- Type Coercion occurs when a verb's argument requires a type mismatch to be resolved.
- The mismatched argument is coerced into the required type using its Qualia Structure.

Example: "Mary enjoyed a coffee"

- Verb: "enjoy" requires an event as its object.
- Noun: "a coffee" is an entity, not an event.
- Coercion: The Telic role of "coffee" provides the event "drink a coffee".

イロト イポト イヨト イヨト

"Mary enjoyed a coffee" \Rightarrow "Mary enjoyed drinking a coffee"

Type Coercion Using Qualia Structure

- ► The Qualia Structure of "coffee":
 - Formal: beverage.
 - Constitutive: made-of-water.
 - Telic: drink.
 - Agentive: *brewed*.

► The Telic role provides the required event for coercion:

Telic(coffee) = drink(coffee)

Coercion Process

1. Verb identifies a type mismatch (*entity* vs. *event*). 2. Use the Qualia Structure to resolve the mismatch. 3. Bind the Telic role to the object and recompose:

< ロ > < 同 > < 三 > < 三 >

HRR Representation of Coercion

- Nouns: Represented as hypervectors (n).
- ► Telic Role: Represented as a hypervector (**r**_{Telic}).
- ▶ Verb: Represented as a hypervector (**v**_{enjoy}).
- Coercion: Bind the verb to the Telic role of the object:

 $composition = v_{enjoy} \circledast r_{Telic} \circledast n_{coffee}$

Worked Example: "Mary Enjoyed a Coffee"

Given:

▶ Noun hypervector:
$$\mathbf{n}_{coffee} = [1, 0, 1].$$

• Telic Role:
$$\mathbf{r}_{\text{Telic}} = [0, 1, 0].$$

• Verb:
$$\mathbf{v}_{enjoy} = [1, 1, 0].$$

Compute coercion:

 $\textbf{composition} = v_{\text{enjoy}} \circledast r_{\text{Telic}} \circledast n_{\text{coffee}}$

Step 1 (Verb-Telic binding):

$$c_0 = v_0 r_0 + v_1 r_2 + v_2 r_1 = 1 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 = 0$$

Step 2 (Verb-Telic-Noun binding):

$$c_0' = c_0 n_0 + c_1 n_2 + c_2 n_1 = \dots$$

Result:

$$\textbf{composition} = [\dots]$$

This vector encodes the coerced meaning "enjoy drinking a coffee."

Denotational Semantics and Type-Theoretic Interpretation

- $\blacktriangleright \ [\![expression]\!] \rightarrow mathematical \ structure$
- Examples:
 - Words: $\llbracket dog \rrbracket = vector in \mathbb{R}^d$.
 - Sentences: \llbracket Dogs bark" \rrbracket = truth value {0, 1}.
- In vector-based semantics:
 - Nouns: $[\![N]\!] : \mathbb{R}^d$
 - Adjectives: $[Adj] : \mathbb{R}^d \to \mathbb{R}^d$
 - Verbs: $\llbracket V \rrbracket : \mathbb{R}^d \to \mathbb{R}^d$
- Sentence composition:

 $[\![" Dogs bark"]\!] =$ function application or combination of vectors.

イロト イポト イヨト イヨト

Conventional Vector Composition

- Words are vectors: $\llbracket w \rrbracket \in \mathbb{R}^d$.
- Composition is performed using vector addition or pointwise multiplication.

Denotational Semantics

Let
$$w_1, w_2 \in \mathbb{R}^d$$
, then:

$$\llbracket " \, \mathsf{fast} \, \, \mathsf{car}" \,
rbracket = \mathbf{v}_\mathsf{fast} + \mathbf{v}_\mathsf{car}.$$

Type-Theoretic Interpretation

▶ Nouns: $e : \mathbb{R}^d$

• Adjectives:
$$e \rightarrow e : \mathbb{R}^d \rightarrow \mathbb{R}^d$$

Composition:

$$\mathsf{Adj}(\mathsf{N}): \mathbb{R}^d o \mathbb{R}^d$$

$$\llbracket "\operatorname{fast"} \rrbracket (\llbracket "\operatorname{car"} \rrbracket) = \mathbf{v}_{\operatorname{fast}} + \mathbf{v}_{\operatorname{car}}.$$

Baroni and Zamparelli: Adjectives as Matrices

Words are assigned different types:

▶ Nouns: \mathbb{R}^d

• Adjectives: $\mathbb{R}^d \to \mathbb{R}^d$ (matrices)

► Composition uses matrix-vector multiplication. Denotational Semantics

Let:

v_{car} ∈
$$\mathbb{R}^d$$
M_{fast} ∈ $\mathbb{R}^{d \times d}$

Then:

$$[\!["fast car"]\!] = \mathbf{M}_{\mathsf{fast}} \cdot \mathbf{v}_{\mathsf{car}}.$$

Baroni and Zamparelli: Adjectives as Matrices

Type-Theoretic Interpretation

▶ Nouns: *e* : ℝ^{*d*}

▶ Adjectives: $e \rightarrow e : \mathbb{R}^d \rightarrow \mathbb{R}^d$ (linear maps)

Composition:

$$\mathsf{Adj}(\mathsf{N}): \mathbb{R}^d \to \mathbb{R}^d$$
$$\llbracket"\mathsf{fast}" \rrbracket(\llbracket"\mathsf{car}" \rrbracket) = \mathbf{M}_{\mathsf{fast}} \cdot \mathbf{v}_{\mathsf{car}}.$$

イロト イポト イヨト イヨト

HRR: Binding with Circular Convolution

- Words and roles are hypervectors (\mathbb{R}^d) .
- Binding is performed using circular convolution.

Denotational Semantics

Let:

▶
$$\mathbf{v}_{car}, \mathbf{v}_{fast} \in \mathbb{R}^d$$

Then: [["fast car"]] = $\mathbf{v}_{fast} \circledast \mathbf{v}_{car}$, where:
 $(\mathbf{v}_{fast} \circledast \mathbf{v}_{car})_i = \sum_{i=0}^{d-1} v_{fast,i} \cdot v_{car,(i-j) \mod d}$.

HRR: Binding with Circular Convolution

Type-Theoretic Interpretation

Nouns: $e : \mathbb{R}^d$

• Adjectives: $e \to e : \mathbb{R}^d \to \mathbb{R}^d$ (convolution operators) Composition:

$$\mathsf{Adj}(\mathsf{N}): \mathbb{R}^d o \mathbb{R}^d$$
 $[" fast"]([" car"]) = \mathbf{v}_{\mathsf{fast}} \circledast \mathbf{v}_{\mathsf{car}}$

イロン 不同 とうほう 不同 とう