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Desiderata

What should a theory of word meaning do for us?
Let's look at some desiderata
From lexical semantics, the linguistic study of word 
meaning



mouse (N)
1. any of numerous small rodents...
2. a hand-operated device that controls 
a cursor... 

Lemmas and senses

sense

lemma

A sense or “concept” is the meaning component of a word
Lemmas can be polysemous (have multiple senses)

Modified from the online thesaurus WordNet



Relations between senses: Synonymy
Synonyms have the same meaning in some or all 
contexts.

◦ filbert / hazelnut
◦ couch / sofa
◦ big / large
◦ automobile / car
◦ vomit / throw up
◦ water / H20



Relations between senses: Synonymy

Note that there are probably no examples of perfect 
synonymy.

◦ Even if many aspects of meaning are identical
◦ Still may differ based on politeness, slang, register, genre, 

etc.



Relation: Synonymy?

water/H20
"H20" in a surfing guide?

big/large
my big sister != my large sister



The Linguistic Principle of Contrast

Difference in form à difference in meaning



Abbé Gabriel Girard 1718

[I do not believe that there 
is a synonymous word in any 
language]

"

"

Re: "exact" synonyms

Thanks to Mark Aronoff!



Relation: Similarity

Words with similar meanings.  Not synonyms, but sharing 
some element of meaning

car, bicycle

cow, horse



Ask humans how similar 2 words are

word1 word2 similarity

vanish disappear 9.8 
behave obey 7.3 
belief impression 5.95 
muscle bone 3.65 
modest flexible 0.98 
hole agreement 0.3 

SimLex-999 dataset (Hill et al., 2015) 



Relation: Word relatedness

Also called "word association"
Words can be related in any way, perhaps via a semantic 
frame or field

◦ coffee, tea:    similar
◦ coffee, cup:   related, not similar



Semantic field

Words that 
◦ cover a particular semantic domain 
◦ bear structured relations with each other. 

hospitals
surgeon, scalpel, nurse, anaesthetic, hospital

restaurants
waiter, menu, plate, food, menu, chef

houses
door, roof, kitchen, family, bed



Relation: Antonymy

Senses that are opposites with respect to only one 
feature of meaning
Otherwise, they are very similar!

dark/light   short/long fast/slow rise/fall
hot/cold up/down in/out

More formally: antonyms can
◦ define a binary opposition or be at opposite ends of a scale

◦ long/short, fast/slow
◦ Be reversives:

◦ rise/fall, up/down



Connotation (sentiment)

• Words have affective meanings
• Positive connotations (happy) 
• Negative connotations (sad)

• Connotations can be subtle:
• Positive connotation: copy, replica, reproduction 
• Negative connotation: fake, knockoff, forgery

• Evaluation (sentiment!)
• Positive evaluation (great, love) 
• Negative evaluation (terrible, hate)



Connotation

Words seem to vary along 3 affective dimensions:
◦ valence: the pleasantness of the stimulus
◦ arousal: the intensity of emotion provoked by the stimulus
◦ dominance: the degree of control exerted by the stimulus

Osgood et al. (1957)

Word Score Word Score
Valence love 1.000 toxic 0.008

happy 1.000 nightmare 0.005
Arousal elated 0.960 mellow 0.069

frenzy 0.965 napping 0.046
Dominance powerful 0.991 weak 0.045

leadership 0.983 empty 0.081

Values from NRC VAD Lexicon  (Mohammad 2018)



So far

Concepts or word senses
◦ Have a complex many-to-many association with words (homonymy, 

multiple senses)

Have relations with each other
◦ Synonymy
◦ Antonymy
◦ Similarity
◦ Relatedness
◦ Connotation



Vector 
Semantics & 
Embeddings

Vector Semantics



Computational models of word meaning

Can we build a theory of how to represent word 
meaning, that accounts for at least some of the 
desiderata?
We'll introduce vector semantics

The standard model in language processing!
Handles many of our goals!



Ludwig Wittgenstein

PI #43: 
"The meaning of a word is its use in the language"



Let's define words by their usages

One way to define "usage": 
words are defined by their environments (the words around them)

Zellig Harris (1954): 
If A and B have almost identical environments we say that they 
are synonyms.



What does recent English borrowing ongchoi mean?

Suppose you see these sentences:
•Ong choi is delicious sautéed with garlic. 
•Ong choi is superb over rice
•Ong choi leaves with salty sauces

And you've also seen these:
• …spinach sautéed with garlic over rice
• Chard stems and leaves are delicious
• Collard greens and other salty leafy greens

Conclusion:
◦ Ongchoi is a leafy green like spinach, chard, or collard greens

◦ We could conclude this based on words like "leaves" and "delicious" and "sauteed" 



Ongchoi: Ipomoea aquatica "Water Spinach"

Yamaguchi, Wikimedia Commons, public domain

空心菜
kangkong
rau muống
…



The Distributional Hypothesis

I “You shall know a word by the company it keeps.” (Firth,
1957)

I “It may be presumed that any two morphemes A and B
having different meanings, also differ somewhere in
distribution: there are some environments in which one occurs
and the other does not.” (Harris, 1951)

I “The similarity of the contextual representations of two words
contributes to the semantic similarity of those words.” (Miller
and Charles, 1991) (emphasis mine)

I Words can be represented by (abstractions over) their
contexts
I Specifically, linguistic context
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Idea 1: Defining meaning by linguistic distribution

Let's define the meaning of a word by its 
distribution in language use, meaning its 
neighboring words or grammatical environments. 



Idea 2: Meaning as a point in space (Osgood et al. 1957)

3 affective dimensions for a word
◦ valence: pleasantness 
◦ arousal: intensity of emotion 
◦ dominance: the degree of control exerted

◦

Hence the connotation of a word is a vector in 3-space

Word Score Word Score
Valence love 1.000 toxic 0.008

happy 1.000 nightmare 0.005
Arousal elated 0.960 mellow 0.069

frenzy 0.965 napping 0.046
Dominance powerful 0.991 weak 0.045

leadership 0.983 empty 0.081

NRC VAD Lexicon 
(Mohammad 2018)



Idea 1: Defining meaning by linguistic distribution

Idea 2: Meaning as a point in multidimensional space



6 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS
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Figure 6.1 A two-dimensional (t-SNE) projection of embeddings for some words and
phrases, showing that words with similar meanings are nearby in space. The original 60-
dimensional embeddings were trained for sentiment analysis. Simplified from Li et al. (2015)
with colors added for explanation.

The fine-grained model of word similarity of vector semantics offers enormous
power to NLP applications. NLP applications like the sentiment classifiers of Chap-
ter 4 or Chapter 5 depend on the same words appearing in the training and test sets.
But by representing words as embeddings, classifiers can assign sentiment as long as
it sees some words with similar meanings. And as we’ll see, vector semantic models
can be learned automatically from text without supervision.

In this chapter we’ll introduce the two most commonly used models. In the tf-idf
model, an important baseline, the meaning of a word is defined by a simple function
of the counts of nearby words. We will see that this method results in very long
vectors that are sparse, i.e. mostly zeros (since most words simply never occur in
the context of others). We’ll introduce the word2vec model family for construct-
ing short, dense vectors that have useful semantic properties. We’ll also introduce
the cosine, the standard way to use embeddings to compute semantic similarity, be-
tween two words, two sentences, or two documents, an important tool in practical
applications like question answering, summarization, or automatic essay grading.

6.3 Words and Vectors

“The most important attributes of a vector in 3-space are {Location, Location, Location}”
Randall Munroe, https://xkcd.com/2358/

Vector or distributional models of meaning are generally based on a co-occurrence
matrix, a way of representing how often words co-occur. We’ll look at two popular
matrices: the term-document matrix and the term-term matrix.

6.3.1 Vectors and documents
In a term-document matrix, each row represents a word in the vocabulary and eachterm-document

matrix
column represents a document from some collection of documents. Fig. 6.2 shows a
small selection from a term-document matrix showing the occurrence of four words
in four plays by Shakespeare. Each cell in this matrix represents the number of times
a particular word (defined by the row) occurs in a particular document (defined by
the column). Thus fool appeared 58 times in Twelfth Night.

The term-document matrix of Fig. 6.2 was first defined as part of the vector
space model of information retrieval (Salton, 1971). In this model, a document isvector space

model

Defining meaning as a point in space based on distribution
Each word = a vector   (not just "good" or "w45")

Similar words are "nearby in semantic space"
We build this space automatically by seeing which words are 
nearby in text



We define meaning of a word as a vector

Called an "embedding" because it's embedded into a 
space (see textbook)
The standard way to represent meaning in NLP

Every modern NLP algorithm uses embeddings as 
the representation of word meaning

Fine-grained model of meaning for similarity 



Intuition: why vectors?
Consider sentiment analysis:

◦ With words,  a feature is a word identity
◦ Feature 5: 'The previous word was "terrible"'
◦ requires exact same word to be in training and test

◦ With embeddings: 
◦ Feature is a word vector
◦ 'The previous word was vector [35,22,17…]
◦ Now in the test set we might see a similar vector [34,21,14]
◦ We can generalize to similar but unseen words!!! 



We'll discuss 2 kinds of embeddings
tf-idf

◦ Information Retrieval workhorse!
◦ A common baseline model
◦ Sparse vectors
◦ Words are represented by (a simple function of) the counts of nearby 

words

Word2vec
◦ Dense vectors
◦ Representation is created by training a classifier to predict whether a 

word is likely to appear nearby
◦ Later we'll discuss extensions called  contextual embeddings



Distributed Representations of Words
I More generally, two approaches to distributed, distributional

representations (Baroni et al. 2014):
I Count-based

I Count occurrences of words in contexts, optionally followed by
some mathematical transformation (e.g., tf-idf, PPMI, SVD)

I Prediction-based
I Given some context vector(s) c, predict some word x (or vice

versa)
I a.k.a. language modeling-based

(e.g., word2vec, , )

Elmo source Bert source

https://muppet.fandom.com/wiki/Elmo
https://muppet.fandom.com/wiki/Bert


From now on:
Computing with meaning representations
instead of string representations

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2020. All

rights reserved. Draft of January 13, 2021.

CHAPTER

6 Vector Semantics and
Embeddings
C⇧@Â(|�ó|�ÿC Nets are for fish;

Once you get the fish, you can forget the net.
�⇧@Â(✏�ó✏�ÿ� Words are for meaning;

Once you get the meaning, you can forget the words
ÑP(Zhuangzi), Chapter 26

The asphalt that Los Angeles is famous for occurs mainly on its freeways. But
in the middle of the city is another patch of asphalt, the La Brea tar pits, and this
asphalt preserves millions of fossil bones from the last of the Ice Ages of the Pleis-
tocene Epoch. One of these fossils is the Smilodon, or saber-toothed tiger, instantly
recognizable by its long canines. Five million years ago or so, a completely different
sabre-tooth tiger called Thylacosmilus lived
in Argentina and other parts of South Amer-
ica. Thylacosmilus was a marsupial whereas
Smilodon was a placental mammal, but Thy-
lacosmilus had the same long upper canines
and, like Smilodon, had a protective bone
flange on the lower jaw. The similarity of
these two mammals is one of many examples
of parallel or convergent evolution, in which particular contexts or environments
lead to the evolution of very similar structures in different species (Gould, 1980).

The role of context is also important in the similarity of a less biological kind
of organism: the word. Words that occur in similar contexts tend to have similar
meanings. This link between similarity in how words are distributed and similarity
in what they mean is called the distributional hypothesis. The hypothesis wasdistributional

hypothesis
first formulated in the 1950s by linguists like Joos (1950), Harris (1954), and Firth
(1957), who noticed that words which are synonyms (like oculist and eye-doctor)
tended to occur in the same environment (e.g., near words like eye or examined)
with the amount of meaning difference between two words “corresponding roughly
to the amount of difference in their environments” (Harris, 1954, 157).

In this chapter we introduce vector semantics, which instantiates this linguisticvector
semantics

hypothesis by learning representations of the meaning of words, called embeddings,embeddings

directly from their distributions in texts. These representations are used in every nat-
ural language processing application that makes use of meaning, and the static em-
beddings we introduce here underlie the more powerful dynamic or contextualized
embeddings like BERT that we will see in Chapter 10.

These word representations are also the first example in this book of repre-
sentation learning, automatically learning useful representations of the input text.representation

learning
Finding such self-supervised ways to learn representations of the input, instead of
creating representations by hand via feature engineering, is an important focus of
NLP research (Bengio et al., 2013).



Vector 
Semantics & 
Embeddings

Vector Semantics
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Words and Vectors



Term-document matrix

6.3 • WORDS AND VECTORS 7

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

represented as a count vector, a column in Fig. 6.3.
To review some basic linear algebra, a vector is, at heart, just a list or array ofvector

numbers. So As You Like It is represented as the list [1,114,36,20] (the first column
vector in Fig. 6.3) and Julius Caesar is represented as the list [7,62,1,2] (the third
column vector). A vector space is a collection of vectors, characterized by theirvector space

dimension. In the example in Fig. 6.3, the document vectors are of dimension 4,dimension

just so they fit on the page; in real term-document matrices, the vectors representing
each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space indicates different meaningful di-
mensions on which documents vary. Thus the first dimension for both these vectors
corresponds to the number of times the word battle occurs, and we can compare
each dimension, noting for example that the vectors for As You Like It and Twelfth
Night have similar values (1 and 0, respectively) for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as a point in |V |-dimensional space;
thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-dimensional
spaces are hard to visualize, Fig. 6.4 shows a visualization in two dimensions; we’ve
arbitrarily chosen the dimensions corresponding to the words battle and fool.
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Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are
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Each document is represented by a vector of words



Visualizing document vectors

6.3 • WORDS AND VECTORS 7

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

represented as a count vector, a column in Fig. 6.3.
To review some basic linear algebra, a vector is, at heart, just a list or array ofvector

numbers. So As You Like It is represented as the list [1,114,36,20] (the first column
vector in Fig. 6.3) and Julius Caesar is represented as the list [7,62,1,2] (the third
column vector). A vector space is a collection of vectors, characterized by theirvector space

dimension. In the example in Fig. 6.3, the document vectors are of dimension 4,dimension

just so they fit on the page; in real term-document matrices, the vectors representing
each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space indicates different meaningful di-
mensions on which documents vary. Thus the first dimension for both these vectors
corresponds to the number of times the word battle occurs, and we can compare
each dimension, noting for example that the vectors for As You Like It and Twelfth
Night have similar values (1 and 0, respectively) for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as a point in |V |-dimensional space;
thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-dimensional
spaces are hard to visualize, Fig. 6.4 shows a visualization in two dimensions; we’ve
arbitrarily chosen the dimensions corresponding to the words battle and fool.

5 10 15 20 25 30

5

10

Henry V [4,13]

As You Like It [36,1]

Julius Caesar [1,7]ba
ttl

e

 fool

Twelfth Night [58,0]

15

40

35 40 45 50 55 60

Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are



Vectors are the basis of information retrieval
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documents for the task of document information retrieval. Two documents that are

Vectors are similar for the two comedies

But comedies are different than the other two
Comedies have more fools and wit and fewer battles.



Idea for word meaning: Words can be vectors too!!!
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battle is "the kind of word that occurs in Julius Caesar and Henry V"

fool is "the kind of word that occurs  in comedies, especially Twelfth Night"
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similar will tend to have similar words, and if two documents have similar words
their column vectors will tend to be similar. The vectors for the comedies As You
Like It [1,114,36,20] and Twelfth Night [0,80,58,15] look a lot more like each other
(more fools and wit than battles) than they look like Julius Caesar [7,62,1,2] or
Henry V [13,89,4,3]. This is clear with the raw numbers; in the first dimension
(battle) the comedies have low numbers and the others have high numbers, and we
can see it visually in Fig. 6.4; we’ll see very shortly how to quantify this intuition
more formally.

A real term-document matrix, of course, wouldn’t just have 4 rows and columns,
let alone 2. More generally, the term-document matrix has |V | rows (one for each
word type in the vocabulary) and D columns (one for each document in the collec-
tion); as we’ll see, vocabulary sizes are generally in the tens of thousands, and the
number of documents can be enormous (think about all the pages on the web).

Information retrieval (IR) is the task of finding the document d from the Dinformation
retrieval

documents in some collection that best matches a query q. For IR we’ll therefore also
represent a query by a vector, also of length |V |, and we’ll need a way to compare
two vectors to find how similar they are. (Doing IR will also require efficient ways
to store and manipulate these vectors by making use of the convenient fact that these
vectors are sparse, i.e., mostly zeros).

Later in the chapter we’ll introduce some of the components of this vector com-
parison process: the tf-idf term weighting, and the cosine similarity metric.

6.3.2 Words as vectors: document dimensions
We’ve seen that documents can be represented as vectors in a vector space. But
vector semantics can also be used to represent the meaning of words. We do this
by associating each word with a word vector— a row vector rather than a columnrow vector

vector, hence with different dimensions, as shown in Fig. 6.5. The four dimensions
of the vector for fool, [36,58,1,4], correspond to the four Shakespeare plays. Word
counts in the same four dimensions are used to form the vectors for the other 3
words: wit, [20,15,2,3]; battle, [1,0,7,13]; and good [114,80,62,89].

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.5 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each word is represented as a row vector of length four.

For documents, we saw that similar documents had similar vectors, because sim-
ilar documents tend to have similar words. This same principle applies to words:
similar words have similar vectors because they tend to occur in similar documents.
The term-document matrix thus lets us represent the meaning of a word by the doc-
uments it tends to occur in.

6.3.3 Words as vectors: word dimensions
An alternative to using the term-document matrix to represent words as vectors of
document counts, is to use the term-term matrix, also called the word-word ma-
trix or the term-context matrix, in which the columns are labeled by words ratherword-word

matrix
than documents. This matrix is thus of dimensionality |V |⇥ |V | and each cell records
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(or "term-context matrix")

Two words are similar in meaning if their context vectors are similar
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Information retrieval (IR) is the task of finding the document d from the Dinformation
retrieval

documents in some collection that best matches a query q. For IR we’ll therefore also
represent a query by a vector, also of length |V |, and we’ll need a way to compare
two vectors to find how similar they are. (Doing IR will also require efficient ways
to store and manipulate these vectors by making use of the convenient fact that these
vectors are sparse, i.e., mostly zeros).

Later in the chapter we’ll introduce some of the components of this vector com-
parison process: the tf-idf term weighting, and the cosine similarity metric.

6.3.2 Words as vectors
We’ve seen that documents can be represented as vectors in a vector space. But
vector semantics can also be used to represent the meaning of words, by associating
each word with a vector.

The word vector is now a row vector rather than a column vector, and hence therow vector

dimensions of the vector are different. The four dimensions of the vector for fool,
[36,58,1,4], correspond to the four Shakespeare plays. The same four dimensions
are used to form the vectors for the other 3 words: wit, [20,15,2,3]; battle, [1,0,7,13];
and good [114,80,62,89]. Each entry in the vector thus represents the counts of the
word’s occurrence in the document corresponding to that dimension.

For documents, we saw that similar documents had similar vectors, because sim-
ilar documents tend to have similar words. This same principle applies to words:
similar words have similar vectors because they tend to occur in similar documents.
The term-document matrix thus lets us represent the meaning of a word by the doc-
uments it tends to occur in.

However, it is most common to use a different kind of context for the dimensions
of a word’s vector representation. Rather than the term-document matrix we use the
term-term matrix, more commonly called the word-word matrix or the term-word-word

matrix
context matrix, in which the columns are labeled by words rather than documents.
This matrix is thus of dimensionality |V |⇥ |V | and each cell records the number of
times the row (target) word and the column (context) word co-occur in some context
in some training corpus. The context could be the document, in which case the cell
represents the number of times the two words appear in the same document. It is
most common, however, to use smaller contexts, generally a window around the
word, for example of 4 words to the left and 4 words to the right, in which case
the cell represents the number of times (in some training corpus) the column word
occurs in such a ±4 word window around the row word. For example here is one
example each of some words in their windows:

is traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually
a computer. This includes information available on the internet

If we then take every occurrence of each word (say strawberry) and count the con-
text words around it, we get a word-word co-occurrence matrix. Fig. 6.5 shows a
simplified subset of the word-word co-occurrence matrix for these four words com-
puted from the Wikipedia corpus (Davies, 2015).

Note in Fig. 6.5 that the two words cherry and strawberry are more similar to
each other (both pie and sugar tend to occur in their window) than they are to other
words like digital; conversely, digital and information are more similar to each other
than, say, to strawberry. Fig. 6.6 shows a spatial visualization.
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context words around it, we get a word-word co-occurrence matrix. Fig. 6.6 shows a
simplified subset of the word-word co-occurrence matrix for these four words com-
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aardvark ... computer data result pie sugar ...
cherry 0 ... 2 8 9 442 25 ...

strawberry 0 ... 0 0 1 60 19 ...
digital 0 ... 1670 1683 85 5 4 ...

information 0 ... 3325 3982 378 5 13 ...
Figure 6.6 Co-occurrence vectors for four words in the Wikipedia corpus, showing six of
the dimensions (hand-picked for pedagogical purposes). The vector for digital is outlined in
red. Note that a real vector would have vastly more dimensions and thus be much sparser.

Note in Fig. 6.6 that the two words cherry and strawberry are more similar to
each other (both pie and sugar tend to occur in their window) than they are to other
words like digital; conversely, digital and information are more similar to each other
than, say, to strawberry. Fig. 6.7 shows a spatial visualization.
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Figure 6.7 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and computer.

Note that |V |, the length of the vector, is generally the size of the vocabulary, of-
ten between 10,000 and 50,000 words (using the most frequent words in the training
corpus; keeping words after about the most frequent 50,000 or so is generally not
helpful). Since most of these numbers are zero these are sparse vector representa-
tions; there are efficient algorithms for storing and computing with sparse matrices.

Now that we have some intuitions, let’s move on to examine the details of com-
puting word similarity. Afterwards we’ll discuss methods for weighting cells.
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Figure 6.6 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and computer.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

Now that we have some intuitions, let’s move on to examine the details of com-
puting word similarity. Afterwards we’ll discuss the tf-idf method of weighting
cells.

6.4 Cosine for measuring similarity

To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot product(v,w) = v ·w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.
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Computing word similarity: Dot product and cosine

The dot product between two vectors is a scalar:

The dot product tends to be high when the two 
vectors have large values in the same dimensions
Dot product can thus be a useful similarity metric 
between vectors
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6.4 Cosine for measuring similarity

To measure similarity between two target words v and w, we need a metric that
takes two vectors (of the same dimensionality, either both with words as dimensions,
hence of length |V |, or both with documents as dimensions as documents, of length
|D|) and gives a measure of their similarity. By far the most common similarity
metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot product(v,w) = v ·w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|v| =

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

We modify the dot product to normalize for the vector length by dividing the
dot product by the lengths of each of the two vectors. This normalized dot product
turns out to be the same as the cosine of the angle between the two vectors, following
from the definition of the dot product between two vectors a and b:

a ·b = |a||b|cosq
a ·b
|a||b| = cosq (6.9)

The cosine similarity metric between two vectors v and w thus can be computed as:cosine

cosine(v,w) =
v ·w
|v||w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector

dividing it by |a|. For unit vectors, the dot product is the same as the cosine.
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Dot product is higher if a vector is longer (has higher 
values in many dimension)
Vector length:

Frequent words (of, the, you) have long vectors (since 
they occur many times with other words).
So dot product overly favors frequent words
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words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.
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For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector

dividing it by |a|. For unit vectors, the dot product is the same as the cosine.
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~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (6.9)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

dividing it by |~a|. For unit vectors, the dot product is the same as the cosine.
The cosine value ranges from 1 for vectors pointing in the same direction, through

0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words apricot or digital is closer
in meaning to information, just using raw counts from the following simplified table:

large data computer
apricot 2 0 0
digital 0 1 2

information 1 6 1

cos(apricot, information) =
2+0+0p

4+0+0
p

1+36+1
=

2
2
p

38
= .16

cos(digital, information) =
0+6+2p

0+1+4
p

1+36+1
=

8p
38
p

5
= .58 (6.11)

The model decides that information is closer to digital than it is to apricot, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.

It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by apricot and
pineapple but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear
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6.4 Cosine for measuring similarity

To measure similarity between two target words v and w, we need a metric that
takes two vectors (of the same dimensionality, either both with words as dimensions,
hence of length |V |, or both with documents as dimensions as documents, of length
|D|) and gives a measure of their similarity. By far the most common similarity
metric is the cosine of the angle between the vectors.
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The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

We modify the dot product to normalize for the vector length by dividing the
dot product by the lengths of each of the two vectors. This normalized dot product
turns out to be the same as the cosine of the angle between the two vectors, following
from the definition of the dot product between two vectors a and b:

a ·b = |a||b|cosq
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The cosine similarity metric between two vectors v and w thus can be computed as:cosine
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For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector

dividing it by |a|. For unit vectors, the dot product is the same as the cosine.

Based on the definition of the dot product between two vectors a and b 
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cosine for term-term matrix vectors ranges from 0–1 
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Cosine examples
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information 5 3982 3325
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This raw dot product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|v| =
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NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors a and
b:

a ·b = |a||b|cosq
a ·b
|a||b| = cosq (6.9)

The cosine similarity metric between two vectors v and w thus can be computed as:cosine

cosine(v,w) =
v ·w
|v||w| =
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For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector

dividing it by |a|. For unit vectors, the dot product is the same as the cosine.
The cosine value ranges from 1 for vectors pointing in the same direction, through

0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words cherry or digital is closer
in meaning to information, just using raw counts from the following shortened table:

pie data computer
cherry 442 8 2
digital 5 1683 1670

information 5 3982 3325

cos(cherry, information) =
442⇤5+8⇤3982+2⇤3325p

4422 +82 +22
p

52 +39822 +33252
= .017

cos(digital, information) =
5⇤5+1683⇤3982+1670⇤3325p

52 +16832 +16702
p

52 +39822 +33252
= .996

The model decides that information is way closer to digital than it is to cherry, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.4 • COSINE FOR MEASURING SIMILARITY 11

This raw dot product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|v| =

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors a and
b:

a ·b = |a||b|cosq
a ·b
|a||b| = cosq (6.9)

The cosine similarity metric between two vectors v and w thus can be computed as:cosine

cosine(v,w) =
v ·w
|v||w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector

dividing it by |a|. For unit vectors, the dot product is the same as the cosine.
The cosine value ranges from 1 for vectors pointing in the same direction, through

0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words cherry or digital is closer
in meaning to information, just using raw counts from the following shortened table:

pie data computer
cherry 442 8 2
digital 5 1683 1670

information 5 3982 3325

cos(cherry, information) =
442⇤5+8⇤3982+2⇤3325p

4422 +82 +22
p

52 +39822 +33252
= .017

cos(digital, information) =
5⇤5+1683⇤3982+1670⇤3325p

52 +16832 +16702
p

52 +39822 +33252
= .996

The model decides that information is way closer to digital than it is to cherry, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.4 • COSINE FOR MEASURING SIMILARITY 11

This raw dot product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|v| =

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors a and
b:

a ·b = |a||b|cosq
a ·b
|a||b| = cosq (6.9)

The cosine similarity metric between two vectors v and w thus can be computed as:cosine

cosine(v,w) =
v ·w
|v||w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector

dividing it by |a|. For unit vectors, the dot product is the same as the cosine.
The cosine value ranges from 1 for vectors pointing in the same direction, through

0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words cherry or digital is closer
in meaning to information, just using raw counts from the following shortened table:

pie data computer
cherry 442 8 2
digital 5 1683 1670

information 5 3982 3325

cos(cherry, information) =
442⇤5+8⇤3982+2⇤3325p

4422 +82 +22
p

52 +39822 +33252
= .017

cos(digital, information) =
5⇤5+1683⇤3982+1670⇤3325p

52 +16832 +16702
p

52 +39822 +33252
= .996

The model decides that information is way closer to digital than it is to cherry, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.4 • COSINE FOR MEASURING SIMILARITY 11

This raw dot product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|v| =

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors a and
b:

a ·b = |a||b|cosq
a ·b
|a||b| = cosq (6.9)

The cosine similarity metric between two vectors v and w thus can be computed as:cosine

cosine(v,w) =
v ·w
|v||w| =
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w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector

dividing it by |a|. For unit vectors, the dot product is the same as the cosine.
The cosine value ranges from 1 for vectors pointing in the same direction, through

0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words cherry or digital is closer
in meaning to information, just using raw counts from the following shortened table:

pie data computer
cherry 442 8 2
digital 5 1683 1670

information 5 3982 3325

cos(cherry, information) =
442⇤5+8⇤3982+2⇤3325p

4422 +82 +22
p

52 +39822 +33252
= .017

cos(digital, information) =
5⇤5+1683⇤3982+1670⇤3325p

52 +16832 +16702
p

52 +39822 +33252
= .996

The model decides that information is way closer to digital than it is to cherry, a
result that seems sensible. Fig. 6.7 shows a visualization.
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Figure 6.7 A (rough) graphical demonstration of cosine similarity, showing vectors for
three words (cherry, digital, and information) in the two dimensional space defined by counts
of the words computer and pie nearby. Note that the angle between digital and information is
smaller than the angle between cherry and information. When two vectors are more similar,
the cosine is larger but the angle is smaller; the cosine has its maximum (1) when the angle
between two vectors is smallest (0�); the cosine of all other angles is less than 1.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.

It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by cherry and
strawberry but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word. We saw this also in Fig. 6.3 for
the Shakespeare corpus; the dimension for the word good is not very discrimina-
tive between plays; good is simply a frequent word and has roughly equivalent high
frequencies in each of the plays.

It’s a bit of a paradox. Words that occur nearby frequently (maybe pie nearby
cherry) are more important than words that only appear once or twice. Yet words
that are too frequent—ubiquitous, like the or good— are unimportant. How can we
balance these two conflicting constraints?

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) is the product
of two terms, each term capturing one of these two intuitions:

The first is the term frequency (Luhn, 1957): the frequency of the word t in theterm frequency

document d. We can just use the raw count as the term frequency:

tft,d = count(t,d) (6.11)

Alternatively we can squash the raw frequency a bit, by using the log10 of the fre-
quency instead. The intuition is that a word appearing 100 times in a document
doesn’t make that word 100 times more likely to be relevant to the meaning of the
document. Because we can’t take the log of 0, we normally add 1 to the count:3

tft,d = log10(count(t,d)+1) (6.12)

If we use log weighting, terms which occur 10 times in a document would have a
tf=2, 100 times in a document tf=3, 1000 times tf=4, and so on.

3 Or we can use this alternative: tft,d =

⇢
1+ log10 count(t,d) if count(t,d) > 0
0 otherwise



Vector 
Semantics & 
Embeddings

Cosine for computing word 
similarity



Vector 
Semantics & 
Embeddings

TF-IDF



But raw frequency is a bad representation

• The co-occurrence matrices we have seen represent each 
cell by word frequencies.

• Frequency is clearly useful; if sugar appears a lot near 
apricot, that's useful information.

• But overly frequent words like the, it, or they are not very 
informative about the context

• It's a paradox! How can we balance these two conflicting 
constraints? 



Two common solutions for word weighting

tf-idf:     tf-idf value for word t in document d:

PMI: (Pointwise mutual information)
◦ PMI 𝒘𝟏, 𝒘𝟐 = 𝒍𝒐𝒈 𝒑(𝒘𝟏,𝒘𝟐)

𝒑 𝒘𝟏 𝒑(𝒘𝟐)
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Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We assign importance to these more discriminative words like Romeo via
the inverse document frequency or idf term weight (Sparck Jones, 1972).idf

The idf is defined using the fraction N/dft , where N is the total number of
documents in the collection, and dft is the number of documents in which
term t occurs. The fewer documents in which a term occurs, the higher this
weight. The lowest weight of 1 is assigned to terms that occur in all the
documents. It’s usually clear what counts as a document: in Shakespeare
we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper
articles, the document is a single article. Occasionally your corpus might
not have appropriate document divisions and you might need to break up the
corpus into documents yourself for the purposes of computing idf.

Because of the large number of documents in many collections, this mea-
sure is usually squashed with a log function. The resulting definition for in-
verse document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.12)

Here are some idf values for some words in the Shakespeare corpus, ranging
from extremely informative words which occur in only one play like Romeo, to
those that occur in a few like salad or Falstaff, to those which are very common like
fool or so common as to be completely non-discriminative since they occur in all 37
plays like good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.074
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighting of the value for word t in document d, wt,d thus combinestf-idf

term frequency with idf:

wt,d = tft,d ⇥ idft (6.13)

Fig. 6.8 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2.
Note that the tf-idf values for the dimension corresponding to the word good have
now all become 0; since this word appears in every document, the tf-idf algorithm
leads it to be ignored in any comparison of the plays. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

The tf-idf weighting is by far the dominant way of weighting co-occurrence ma-
trices in information retrieval, but also plays a role in many other aspects of natural

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

Words like "the" or "it" have very low idf

See if words like "good" appear more often with "great" than 
we would expect by chance



Term frequency (tf)

tft,d = count(t,d)

Instead of using raw count, we squash a bit:

tft,d = log10(count(t,d)+1) 



Document frequency (df)

dft is the number of documents t occurs in.
(note this is not collection frequency: total count across 
all documents)
"Romeo" is very distinctive for one Shakespeare play:
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that are too frequent—ubiquitous, like the or good— are unimportant. How can we
balance these two conflicting constraints?

There are two common solutions to this problem: in this section we’ll describe
the tf-idf algorithm, usually used when the dimensions are documents. In the next
we introduce the PPMI algorithm (usually used when the dimensions are words).

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) is the product
of two terms, each term capturing one of these two intuitions:

The first is the term frequency (Luhn, 1957): the frequency of the word t in theterm frequency

document d. We can just use the raw count as the term frequency:

tft,d = count(t,d) (6.11)

More commonly we squash the raw frequency a bit, by using the log10 of the fre-
quency instead. The intuition is that a word appearing 100 times in a document
doesn’t make that word 100 times more likely to be relevant to the meaning of the
document. Because we can’t take the log of 0, we normally add 1 to the count:2

tft,d = log10(count(t,d)+1) (6.12)

If we use log weighting, terms which occur 0 times in a document would have
tf = log10(1) = 0, 10 times in a document tf = log10(11) = 1.4, 100 times tf =
log10(101) = 2.004, 1000 times tf = 3.00044, and so on.

The second factor in tf-idf is used to give a higher weight to words that occur
only in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that occur
frequently across the entire collection aren’t as helpful. The document frequencydocument

frequency
dft of a term t is the number of documents it occurs in. Document frequency is
not the same as the collection frequency of a term, which is the total number of
times the word appears in the whole collection in any document. Consider in the
collection of Shakespeare’s 37 plays the two words Romeo and action. The words
have identical collection frequencies (they both occur 113 times in all the plays) but
very different document frequencies, since Romeo only occurs in a single play. If
our goal is to find documents about the romantic tribulations of Romeo, the word
Romeo should be highly weighted, but not action:

Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We emphasize discriminative words like Romeo via the inverse document fre-
quency or idf term weight (Sparck Jones, 1972). The idf is defined using the frac-idf

tion N/dft , where N is the total number of documents in the collection, and dft is
the number of documents in which term t occurs. The fewer documents in which a
term occurs, the higher this weight. The lowest weight of 1 is assigned to terms that
occur in all the documents. It’s usually clear what counts as a document: in Shake-
speare we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper articles,
the document is a single article. Occasionally your corpus might not have appropri-
ate document divisions and you might need to break up the corpus into documents
yourself for the purposes of computing idf.

2 Or we can use this alternative: tft,d =

⇢
1+ log10 count(t,d) if count(t,d) > 0
0 otherwise



Inverse document frequency (idf)
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Because of the large number of documents in many collections, this measure
too is usually squashed with a log function. The resulting definition for inverse
document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.13)

Here are some idf values for some words in the Shakespeare corpus, ranging from
extremely informative words which occur in only one play like Romeo, to those that
occur in a few like salad or Falstaff, to those which are very common like fool or so
common as to be completely non-discriminative since they occur in all 37 plays like
good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighted value wt,d for word t in document d thus combines termtf-idf

frequency tft,d (defined either by Eq. 6.11 or by Eq. 6.12) with idf from Eq. 6.13:

wt,d = tft,d ⇥ idft (6.14)

Fig. 6.9 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2,
using the tf equation Eq. 6.12. Note that the tf-idf values for the dimension corre-
sponding to the word good have now all become 0; since this word appears in every
document, the tf-idf algorithm leads it to be ignored. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log10(20 + 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.6.

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).
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Here are some idf values for some words in the Shakespeare corpus, ranging from
extremely informative words which occur in only one play like Romeo, to those that
occur in a few like salad or Falstaff, to those which are very common like fool or so
common as to be completely non-discriminative since they occur in all 37 plays like
good or sweet.3
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using the tf equation Eq. 6.12. Note that the tf-idf values for the dimension corre-
sponding to the word good have now all become 0; since this word appears in every
document, the tf-idf algorithm leads it to be ignored. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log10(20 + 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.6.

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

N is the total number of documents 
in the collection



What is a document?

Could be a play or a Wikipedia article
But for the purposes of tf-idf, documents can be 
anything; we often call each paragraph a document!



Final tf-idf weighted value for a word

Raw counts:

tf-idf:
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extremely informative words which occur in only one play like Romeo, to those that
occur in a few like salad or Falstaff, to those which are very common like fool or so
common as to be completely non-discriminative since they occur in all 37 plays like
good or sweet.3
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using the tf equation Eq. 6.12. Note that the tf-idf values for the dimension corre-
sponding to the word good have now all become 0; since this word appears in every
document, the tf-idf algorithm leads it to be ignored. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log10(20 + 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.6.

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).
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As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

represented as a count vector, a column in Fig. 6.3.
To review some basic linear algebra, a vector is, at heart, just a list or array ofvector

numbers. So As You Like It is represented as the list [1,114,36,20] (the first column
vector in Fig. 6.3) and Julius Caesar is represented as the list [7,62,1,2] (the third
column vector). A vector space is a collection of vectors, characterized by theirvector space

dimension. In the example in Fig. 6.3, the document vectors are of dimension 4,dimension

just so they fit on the page; in real term-document matrices, the vectors representing
each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space indicates different meaningful di-
mensions on which documents vary. Thus the first dimension for both these vectors
corresponds to the number of times the word battle occurs, and we can compare
each dimension, noting for example that the vectors for As You Like It and Twelfth
Night have similar values (1 and 0, respectively) for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as a point in |V |-dimensional space;
thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-dimensional
spaces are hard to visualize, Fig. 6.4 shows a visualization in two dimensions; we’ve
arbitrarily chosen the dimensions corresponding to the words battle and fool.
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Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are
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Here are some idf values for some words in the Shakespeare corpus, ranging from
extremely informative words which occur in only one play like Romeo, to those that
occur in a few like salad or Falstaff, to those which are very common like fool or so
common as to be completely non-discriminative since they occur in all 37 plays like
good or sweet.3
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The tf-idf weighted value wt,d for word t in document d thus combines termtf-idf

frequency tft,d (defined either by Eq. 6.11 or by Eq. 6.12) with idf from Eq. 6.13:

wt,d = tft,d ⇥ idft (6.14)

Fig. 6.9 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2,
using the tf equation Eq. 6.12. Note that the tf-idf values for the dimension corre-
sponding to the word good have now all become 0; since this word appears in every
document, the tf-idf algorithm leads it to be ignored. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log10(20 + 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.6.

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).
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Pointwise Mutual Information

Pointwise mutual information: 
Do events x and y co-occur more than if they were independent?

PMI between two words:  (Church & Hanks 1989)
Do words x and y co-occur more than if they were independent? 

PMI 𝑤𝑜𝑟𝑑!, 𝑤𝑜𝑟𝑑" = log"
𝑃(𝑤𝑜𝑟𝑑!, 𝑤𝑜𝑟𝑑")
𝑃 𝑤𝑜𝑟𝑑! 𝑃(𝑤𝑜𝑟𝑑")

PMI(X,Y ) = log2
P(x,y)
P(x)P(y)



Positive Pointwise Mutual Information
◦ PMI ranges from −∞ to +∞
◦ But the negative values are problematic

◦ Things are co-occurring less than we expect by chance
◦ Unreliable without enormous corpora

◦ Imagine w1 and w2 whose probability is each 10-6

◦ Hard to be sure p(w1,w2) is significantly different than 10-12

◦ Plus it’s not clear people are good at “unrelatedness”
◦ So we just replace negative PMI values by 0
◦ Positive PMI (PPMI) between word1 and word2:

PPMI 𝑤𝑜𝑟𝑑!, 𝑤𝑜𝑟𝑑" = max log"
𝑃(𝑤𝑜𝑟𝑑!, 𝑤𝑜𝑟𝑑")
𝑃 𝑤𝑜𝑟𝑑! 𝑃(𝑤𝑜𝑟𝑑")

, 0



Computing PPMI on a term-context matrix

Matrix F with W rows (words) and C columns (contexts)
fij is # of times wi occurs in context cj

62
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context c j. This can be turned into a PPMI matrix where ppmii j gives the PPMI
value of word wi with context c j as follows:

pi j =
fi jPW

i=1
PC

j=1 fi j
pi⇤ =

PC
j=1 fi jPW

i=1
PC

j=1 fi j
p⇤ j =

PW
i=1 fi jPW

i=1
PC

j=1 fi j
(6.19)

PPMIi j = max(log2
pi j

pi⇤p⇤ j
,0) (6.20)

Let’s see some PPMI calculations. We’ll use Fig. 6.10, which repeats Fig. 6.6 plus
all the count marginals, and let’s pretend for ease of calculation that these are the
only words/contexts that matter.

computer data result pie sugar count(w)
cherry 2 8 9 442 25 486

strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 3447

information 3325 3982 378 5 13 7703

count(context) 4997 5673 473 512 61 11716
Figure 6.10 Co-occurrence counts for four words in 5 contexts in the Wikipedia corpus,
together with the marginals, pretending for the purpose of this calculation that no other
words/contexts matter.

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 6.6 encompassed all the relevant word contexts/dimensions,
as follows:

P(w=information,c=data) =
3982
11716

= .3399

P(w=information) =
7703
11716

= .6575

P(c=data) =
5673
11716

= .4842

ppmi(information,data) = log2(.3399/(.6575⇤ .4842)) = .0944

Fig. 6.11 shows the joint probabilities computed from the counts in Fig. 6.10, and
Fig. 6.12 shows the PPMI values. Not surprisingly, cherry and strawberry are highly
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context c j. This can be turned into a PPMI matrix where ppmii j gives the PPMI
value of word wi with context c j as follows:

pi j =
fi jPW

i=1
PC

j=1 fi j
pi⇤ =

PC
j=1 fi jPW

i=1
PC

j=1 fi j
p⇤ j =

PW
i=1 fi jPW

i=1
PC

j=1 fi j
(6.19)

PPMIi j = max(log2
pi j

pi⇤p⇤ j
,0) (6.20)

Let’s see some PPMI calculations. We’ll use Fig. 6.10, which repeats Fig. 6.6 plus
all the count marginals, and let’s pretend for ease of calculation that these are the
only words/contexts that matter.

computer data result pie sugar count(w)
cherry 2 8 9 442 25 486

strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 3447

information 3325 3982 378 5 13 7703

count(context) 4997 5673 473 512 61 11716
Figure 6.10 Co-occurrence counts for four words in 5 contexts in the Wikipedia corpus,
together with the marginals, pretending for the purpose of this calculation that no other
words/contexts matter.

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 6.6 encompassed all the relevant word contexts/dimensions,
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Figure 6.11 Replacing the counts in Fig. 6.6 with joint probabilities, showing the marginals
around the outside.
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pmiij = log2
pij

pi*p* j

pmi(information,data) = log2 (.3399 / (.6575*.4842) ) = .0944
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computer data result pie sugar
cherry 0 0 0 4.38 3.30

strawberry 0 0 0 4.10 5.51
digital 0.18 0.01 0 0 0

information 0.02 0.09 0.28 0 0
Figure 6.12 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 6.11. Note that most of the 0 PPMI values are ones that had
a negative PMI; for example PMI(cherry,computer) = -6.7, meaning that cherry and computer
co-occur on Wikipedia less often than we would expect by chance, and with PPMI we replace
negative values by zero.

events is to slightly change the computation for P(c), using a different function Pa(c)
that raises the probability of the context word to the power of a:

PPMIa(w,c) = max(log2
P(w,c)

P(w)Pa(c)
,0) (6.21)

Pa(c) =
count(c)a

P
c count(c)a (6.22)

Levy et al. (2015) found that a setting of a = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams described below in Eq. 6.32). This works because raising the count to a =
0.75 increases the probability assigned to rare contexts, and hence lowers their PMI
(Pa(c) > P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

6.7 Applications of the tf-idf or PPMI vector models

In summary, the vector semantics model we’ve described so far represents a target
word as a vector with dimensions corresponding either to to the documents in a large
collection (the term-document matrix) or to the counts of words in some neighboring
window (the term-term matrix). The values in each dimension are counts, weighted
by tf-idf (for term-document matrices) or PPMI (for term-term matrices), and the
vectors are sparse (since most values are zero).

The model computes the similarity between two words x and y by taking the
cosine of their tf-idf or PPMI vectors; high cosine, high similarity. This entire model
is sometimes referred to as the tf-idf model or the PPMI model, after the weighting
function.

The tf-idf model of meaning is often used for document functions like deciding
if two documents are similar. We represent a document by taking the vectors of
all the words in the document, and computing the centroid of all those vectors.centroid

The centroid is the multidimensional version of the mean; the centroid of a set of
vectors is a single vector that has the minimum sum of squared distances to each of
the vectors in the set. Given k word vectors w1,w2, ...,wk, the centroid document
vector d is:document

vector

d =
w1 +w2 + ...+wk

k
(6.23)

Resulting PPMI matrix (negatives replaced by 0) 



Weighting PMI

PMI is biased toward infrequent events
◦ Very rare words have very high PMI values

Two solutions:
◦ Give rare words slightly higher probabilities
◦ Use add-one smoothing (which has a similar effect)
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Weighting PMI: Giving rare context words slightly 
higher probability

Raise the context probabilities to 𝛼 = 0.75:

This helps because 𝑃# 𝑐 > 𝑃 𝑐 for rare c
Consider two events, P(a) = .99 and P(b)=.01

𝑃# 𝑎 = .%%."#

.%%."#&.'!."#
= .97 𝑃# 𝑏 = .'!."#

.'!."#&.'!."#
= .03
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p(w,context) p(w)
computer data pinch result sugar p(w)

apricot 0 0 0.5 0 0.5 0.11
pineapple 0 0 0.5 0 0.5 0.11

digital 0.11 0.5 0 0.5 0 0.21
information 0.5 .32 0 0.21 0 0.58

p(context) 0.16 0.37 0.11 0.26 0.11
Figure 19.3 Replacing the counts in Fig. 17.2 with joint probabilities, showing the
marginals around the outside.

computer data pinch result sugar
apricot 0 0 2.25 0 2.25

pineapple 0 0 2.25 0 2.25
digital 1.66 0 0 0 0

information 0 0.57 0 0.47 0
Figure 19.4 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 17.2 again showing six dimensions.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency
events is to slightly change the computation for P(c), using a different function Pa(c)
that raises contexts to the power of a (Levy et al., 2015):

PPMIa(w,c) = max(log2
P(w,c)

P(w)Pa(c)
,0) (19.8)

Pa(c) =
count(c)a

P
c count(c)a (19.9)

Levy et al. (2015) found that a setting of a = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams (Mikolov et al., 2013a) and GloVe (Pennington et al., 2014)). This works
because raising the probability to a = 0.75 increases the probability assigned to rare
contexts, and hence lowers their PMI (Pa(c) > P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

computer data pinch result sugar
apricot 2 2 3 2 3

pineapple 2 2 3 2 3
digital 4 3 2 3 2

information 3 8 2 6 2
Figure 19.5 Laplace (add-2) smoothing of the counts in Fig. 17.2.

19.2.1 Measuring similarity: the cosine
To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors. In this section we’ll
motivate and introduce this important measure.



Distributed Representations of Words
I More generally, two approaches to distributed, distributional

representations (Baroni et al. 2014):
I Count-based

I Count occurrences of words in contexts, optionally followed by
some mathematical transformation (e.g., tf-idf, PPMI, SVD)

I Prediction-based
I Given some context vector(s) c, predict some word x (or vice

versa)
I a.k.a. language modeling-based

(e.g., word2vec, , )

Elmo source Bert source

https://muppet.fandom.com/wiki/Elmo
https://muppet.fandom.com/wiki/Bert


Language Models

I Given some context vector(s) c, predict some word x (or vice
versa)

I Two approaches to language models:
I Generative models

I Model the joint probability distribution P(x, c)
I Examples: n-gram language models

I Unigram: predict P(xi )
I Bigram: predict P(xi |xi−1)
I Trigram: predict P(xi |xi−2, xi−1)



Language Models

I Given some context vector(s) c, predict some word x (or vice
versa)

I Two approaches to language models:
I Discriminative models

I Predict the conditional probability P(x|c) (or P(c|x)) directly
I Examples: neural network language models

I Feedforward: word2vec (Mikolov et al., 2013a, 2013b)

I Recurrent: (Peters et al., 2018)

I Transformer: (Devlin et al., 2019)

Elmo source Bert source

https://muppet.fandom.com/wiki/Elmo
https://muppet.fandom.com/wiki/Bert


word2vec

I Based on a feedforward neural network language model
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I ŷ is the predicted output
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Neural Networks

x

h

ŷ

W

C

I Output layer

I Hidden layer(s)

I Input layer

I h = g(x ·W)
I ŷ = f (h · C)

I W and C are weight (or
parameter) matrices

I May or may not
include a bias term

I g and f are activation
functions



word2vec

I Based on a feedforward neural network language model

xi−2 xi−1 xi+1 xi+2

h

x̂i

CBOW

xi

h

x̂i−2 x̂i−1 x̂i+1 x̂i+2

Skip-gram

I Continuous bag of words (CBOW): use context to predict
current word

I Skip-gram: use current word to predict context



CBOW

xi−2 xi−1 xi+1 xi+2

h

x̂i

I Input layer: one-hot word vectors
I

[
0 · · · 0 1 0 · · · 0

]
I Context words within some window



CBOW

xi−2 xi−1 xi+1 xi+2

h

x̂i

I Hidden (projection) layer: identity activation function, no bias
I Weight matrix shared for all context words
I Input → hidden = table lookup (in weight matrix)
I Context word vectors are averaged



CBOW

xi−2 xi−1 xi+1 xi+2

h

x̂i

I Output layer: softmax activation function
I Numbers → probabilities



Skip-gram

xi

h

x̂i−2 x̂i−1 x̂i+1 x̂i+2

W

C

I Input layer: one-hot word vectors
I

[
0 · · · 0 1 0 · · · 0

]



Skip-gram

xi

h

x̂i−2 x̂i−1 x̂i+1 x̂i+2

W

C

I Hidden (projection) layer: identity activation function, no bias
I Input → hidden = table lookup (in weight matrix)



Skip-gram

xi

h

x̂i−2 x̂i−1 x̂i+1 x̂i+2

W

C

I Output layer: softmax activation function
I Predict context words within some window
I Separate classification for each context word
I Closer context words sampled more than distant context words



word2vec

I Skip-gram model: for each word, word2vec learns two word
embeddings
I Target word vector w (row of W, = output of hidden layer)
I Context word vector c (column of C)

I Common final word embeddings
I Add w + c
I Just w (throw away c)



Vector 
Semantics & 
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Properties of Embeddings



The kinds of neighbors depend on window size

Small windows (C= +/- 2) : nearest words are syntactically 
similar words in same taxonomy

◦Hogwarts nearest neighbors are other fictional schools
◦Sunnydale, Evernight, Blandings

Large windows (C= +/- 5) :  nearest words are related 
words in same semantic field

◦Hogwarts nearest neighbors are Harry Potter world:
◦Dumbledore, half-blood,  Malfoy
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For example Levy and Goldberg (2014a) showed that using skip-gram with a
window of ±2, the most similar words to the word Hogwarts (from the Harry Potter
series) were names of other fictional schools: Sunnydale (from Buffy the Vampire
Slayer) or Evernight (from a vampire series). With a window of ±5, the most similar
words to Hogwarts were other words topically related to the Harry Potter series:
Dumbledore, Malfoy, and half-blood.

It’s also often useful to distinguish two kinds of similarity or association between
words (Schütze and Pedersen, 1993). Two words have first-order co-occurrencefirst-order

co-occurrence
(sometimes called syntagmatic association) if they are typically nearby each other.
Thus wrote is a first-order associate of book or poem. Two words have second-order
co-occurrence (sometimes called paradigmatic association) if they have similarsecond-order

co-occurrence
neighbors. Thus wrote is a second-order associate of words like said or remarked.

Analogy/Relational Similarity: Another semantic property of embeddings is their
ability to capture relational meanings. In an important early vector space model of
cognition, Rumelhart and Abrahamson (1973) proposed the parallelogram modelparallelogram

model
for solving simple analogy problems of the form a is to b as a* is to what?. In such
problems, a system given a problem like apple:tree::grape:?, i.e., apple is to tree as
grape is to , and must fill in the word vine. In the parallelogram model, illus-
trated in Fig. 6.15, the vector from the word apple to the word tree (=

#       »
apple� #   »tree)

is added to the vector for grape ( #        »grape); the nearest word to that point is returned.

tree

apple

grape
vine

Figure 6.15 The parallelogram model for analogy problems (Rumelhart and Abrahamson,
1973): the location of

#     »
vine can be found by subtracting #   »tree from

#       »
apple and adding #       »grape.

In early work with sparse embeddings, scholars showed that sparse vector mod-
els of meaning could solve such analogy problems (Turney and Littman, 2005), but
the parallelogram method received more modern attention because of its success
with word2vec or GloVe vectors (Mikolov et al. 2013b, Levy and Goldberg 2014b,
Pennington et al. 2014). For example, the result of the expression (

#     »
king)� #     »man +

#            »woman is a vector close to #         »queen. Similarly,
#      »
Paris� #           »

France +
#     »
Italy) results in a

vector that is close to
#         »
Rome. The embedding model thus seems to be extracting rep-

resentations of relations like MALE-FEMALE, or CAPITAL-CITY-OF, or even COM-
PARATIVE/SUPERLATIVE, as shown in Fig. 6.16 from GloVe.

For a a:b::a*:b* problem, meaning the algorithm is given a, b, and a* and must
find b*, the parallelogram method is thus:

b̂⇤ = argmax
x

distance(x,a⇤ �a+b) (6.41)

with the distance function defined either as cosine or as Euclidean distance.
There are some caveats. For example, the closest value returned by the paral-

lelogram algorithm in word2vec or GloVe embedding spaces is usually not in fact
b* but one of the 3 input words or their morphological variants (i.e., cherry:red ::

Analogical relations
The classic parallelogram model of analogical reasoning 
(Rumelhart and Abrahamson 1973)

To solve: "apple is to tree as grape is to  _____"
Add tree – apple  to grape to get vine



Analogical relations via parallelogram

The parallelogram method can solve analogies with both sparse
and dense embeddings (Turney and Littman 2005, Mikolov et al.
2013b)

−−→
king−−−→man +−−−−→woman is close to −−−→queen
−−→
Paris−−−−−→France +

−−→
Italy is close to

−−−→
Rome

For a problem a : a∗ :: b : b∗, the parallelogram method is:

b̂∗ = argmin
x

distance(x , a∗ − a + b)



Structure in GloVE Embedding space



Caveats with the parallelogram method

It only seems to work for frequent words, small 
distances and certain relations (relating countries to 
capitals, or parts of speech), but not others. (Linzen
2016, Gladkova et al. 2016, Ethayarajh et al. 2019a) 

Understanding analogy is an open area of research 
(Peterson et al. 2020)



Train embeddings on different decades of historical text to see meanings shift
~30 million books, 1850-1990, Google Books data

Embeddings as a window onto historical semantics

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal 
Statistical Laws of Semantic Change. Proceedings of ACL.



Embeddings reflect cultural bias!

Ask “Paris : France :: Tokyo : x” 
◦ x = Japan

Ask “father : doctor :: mother : x” 
◦ x = nurse

Ask “man : computer programmer :: woman : x” 
◦ x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer 
programmer as woman is to homemaker? debiasing word embeddings." In NeurIPS, pp. 4349-4357. 2016.

Algorithms that use embeddings as part of e.g., hiring searches for 
programmers, might lead to bias in hiring



Historical embedding as a tool to study cultural biases

• Compute a gender or ethnic bias for each adjective: e.g., how 
much closer the adjective is to "woman" synonyms than 
"man" synonyms, or names of particular ethnicities
• Embeddings for competence adjective (smart, wise, 

brilliant, resourceful, thoughtful, logical) are biased toward 
men, a bias slowly decreasing 1960-1990

• Embeddings for dehumanizing adjectives (barbaric, 
monstrous, bizarre)  were biased toward Asians in the 
1930s, bias decreasing over the 20th century.

• These match the results of old surveys done in the 1930s

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. 
Proceedings of the National Academy of Sciences 115(16), E3635–E3644.


